Приложение X. Расчет рассеивания загрязняющих веществ на период проведения строительства объекта

УПРЗА «ЭКОЛОГ», версия 4.50 Copyright © 1990-2018 ФИРМА «ИНТЕГРАЛ»

"Программа зарегистрирована на: ООО "Морстройтехнология Регистрационный номер: 60-00-8556

Предприятие: 1, Западный мол

Город: 2, Новороссийск Район: 1, Новый район Адрес предприятия: Разработчик:

ИНН: ОКПО: Отрасль:

Величина нормативной санзоны: 0 м

ВИД: 2, Строительство

ВР: 1, Новый вариант расчета Расчетные константы: S=999999,99

Расчет: «Расчет рассеивания с учетом застройки по MPP-2017» (лето)

Метеорологические параметры

-3,1
26
200
14
0
0

Структура предприятия (площадки, цеха)

- Акватория порта	
1 - Акватория порта	
A TANAMAN TOWN OF PARTY	

Параметры источников выбросов

		ž
		-
		U
		4
		F
		0
		8
		Ή
		۳
		3
		₹
		v
		Z
		Ξ
		ō
		5
		3
		1
ķ,	:	-
=		Ġ

"%" - источник учитывается с исключением из фона:
"+" - источник учитывается без исключения из фона;
"-" - источник не учитывается и его вклад исключается из фона.
При отсутствии отметок источник не учитывается.

Типы источников: 1 - Точечный;

3 - Неорганизованный:

4 - Совомупность точечных источников;

5 - С зависимостью массы выброса от скорости ветра.
6 - Точечный, с зонтом или выбросом горизонтально.
7 - Совокупность точечных (зонт или выброс вбою):
8 - Автомагистраль (неортанизованный линейный):
9 - Точечный, с выбросом вбок;
10 - Свена.

npw net, Hawm			Ī	Высота	Диаметр	Объем	Скорость Плотность	Тлотность	Tewn.	Ширина	Откло	Отклонение	Козф		Координаты	Tbl	
	Наименование источника	Bap.	Twn	MCT. (M)		(Ny6.M)	(M/c)	rBC, (icr/icy6.m)	rBc (°C)	MCTO4.	Yron	выороса, град Угол Направл,	рел.	X4 (M)	1,4 (M)	XZ (m)	Y2 (M)
. %							Ne non.: 1	Ng run.: 1, Ng цеха: 1									
	ДЭС 200 кВт	¥	÷	10	0.20	1,21	38,52	1,29	450,00	00.00		0.	1,1	1284573.4 442746,60	2746,60	7	1
200 100 100 100 100 100 100 100 100 100	100				,	2000		1			Лето				Зима		
Код в-ва	наименование вещества	e Berne	CTBS		ă	Bubboc, (r/c)	Bulbpac, (T/r)	(L)	CMITTIK	1K	Xm	mn	-	Ступдк	Xm		m _D
0301	Азота диоксид (Азот (IV) оксид)	VI) TOE) оксид	~	Ģ	0,1706687	1,408000	1 1	0,42		112,96	4,97	2	00'0	00'0		00'0
0304	Азот (II) оксид (Азота оксид)	(Азота с	(Бирж			0,0277333	0,228800	1 1	0,03		112,96	4,97	1	00'0	00'0		00'0
0328	Углерод (Сажа)	(Сажа)			0	0.0079444	0.062810	1 1	0.03		112,96	4.97	4	00'0	00'0		00'0
0330	Сера диоксид (Ангидрид сернистый)	арид с	ернист	bill)	0	0,0666667	0.550000	1 1	0.07		112,96	4.97	4	00'0	00'0		00'0
0337	Углерод оксид	оксид.			0	0.1722222	1,430000	1 1	0,02		112,96	4.97	4	00'0	00'0	7	00'0
0703	Бенз/а/пирен (3.4-Бензпирен)	4-Бенз	пирен)		0	0.0000000	0.000002	1 2	0,01		112,96	4.97	7	00'0	00'0		00.00
1325	Формальдегид	ьдегид			0	0.0018889	0.015730	1 1	0,02		112.96	4.97	10	00'0	00'0	Ĭ	000
2732	Керосин	CNH			0	0.0460556	0.377190	1 1	0.02		112,96	4.97	2	00'0	00'0		000
% 6101 C	Сварочные работы	÷	(c)	2	00'0			1.29		2.00	£.	,	7	1284754,1 44	442862,10 128	1284755,8 44	442863.20
7 - 4 - 22					Č	100					Лето				SMMB		
KOM B-BE	наименование вещества	e Berrie	CTBS		ă	RNopoc, (nc)	Selopoc, (T/L)	/L) L	Cm/TIAK	1K	Ϋ́	m)	_	Cm/ngK	Υm		5
0123 диЖел	ди Железо триоксид (Железа оксид) (в пересчете на железо)	CMA) (B	nepec	чете на х		0.0016410	0.000236	1	0,16		11,40	0,50	0	00'0	00'0		00'0
0143 Mapra	Марганец и его поединения (в пересчете на м оксид)	repect	ете на	марганца (IV)		0,0001287	0,000019		0,51		11,40	0,50	0	00'0	00'0		00'0
0301	Азота дионсид (Азот (IV) оксид)	ASOT (IV	оксид	•		0.0015938	0.000230	1 1	0.31		11,40	0.50	0	00'0	00'0		0.00
0337	Углерод оксид	ОКСИД				0.0078507	0.001131	1	90'0		11.40	0.50	0	00'0	00'0		00'0

0342	Фториды газообразные	вообразн	Me			0.0005490	0.000079	+	1.08		11.40	0.50	00'0		00'0	0.00
0344	Фториды плохо растворимые	раствор	имые			0,0002361	0.000034		0,05		11,40	0,50	00'0		00'0	00'0
2908	Пыль неорганическая: 70-20% SiO2	108 R: 70-2	30% SiC	25		0,0001181	0.000017	67	0,05		5,70	0,50	00'0		00'0	00'0
% 6102	Устройство антикоррозионного покрытия	Ŧ	n	2	00'0			1.29		2,00	3	7	1.1 1284701,0	0 442828,30	1284742,9	442855.50
											Лето	er i		3	Зима	
Kod B-BB	наименование вещества	оет ве	188			Bubboc, (r/c)	Bubboc. (T/r)	(r)	CM/IDIK	¥	Υm	Um	Стипдк	ДК	w.X	m _O
0621	Метилбензол (Толуол)	on (Tonyo	(FC			0.3143056	0.084155	4 3	20.58		11:40	0.50	00'0		00'0	00'0
1210	Бутилацетат	цетат				0,0608333	0,017054	1	23,90		11:40	0.50	00'0		00'0	00'0
1401	Пропан-2-он (Ацетон)	н (Ацето	(H			0.1318056	0.036906	4 4	14.80	-5-	11,40	0.50	00'0	_	00'0	00.00
1411	Циклогексанон	нонеон				0.0269771	0.003885	-	26.50	٥	11,40	0.50	00'0		00'0	00'0
2902	Вавешенные вещества	е вещест	88			0.0645833	0.017400	3	15,22	20	5,70	0.50	00'0		000	00'0
% 6103	Перегрузка щебня и песка	-	w	2	00'0			1.29		2,00	1	4	1,1 1284767,1	442869,10	1284771,5	442871.50
98.0								П			Лето			60	SMMB	
Код в-ва	Наименование вещества	de Beujec	TBA			Bu6poc, (r/c) Bu6poc, (r/r)	Выброс, (1	Ψ. Ε	CM/IIIK	3K	Жm	υn	Cm/ngk	AK AK	Xm	m _O
2907	Пыль неорганическая >70% SiO2	окая >70	W SIO.	2		0,0654733	0.002468	60	51.45	12	5.70	0.50	00'0		000	0.00
2908	Пыль неорганическая: 70-20% SiO2	103 TO-2	90% SiC	25		0,1468729	0.012874	60	67.70	ů.	5.70	0.50	00'0		000	00'0
% 6104	Двигатели судов	1	63	9	00'0			1,29		20.00	ì	×	1.1 1284583,6	6 442788,30	1284794.1	442923.10
0.00	9	į				A Charles and the second		3			Лето			8	Зима	
Код в-ва	наименование веществя	ve Bernec	TBS			Bubboc, (r/c)	Balopoc. (T/r)	(C)	Стипдк	*	mX.	-Ch	CM/TIGIK	ДК	Xm	υn
0301	Азота дионсид (Азот (IV) онсид)	A3OT (IV)	ОКСИД)			0.2560000	2,073600	0	1,18		57,00	0,50	00'0		00'0	000
0304	Азот (II) оксид (Азота оксид)	(Азота о	ксид)			0,0416000	0.336960	4	0,10		57,00	0,50	00'0		000	00'0
0328	Углерод (Сажа)	(Casea)				0,0119167	0,092502		0.07		57,00	0,50	00'0		000	00'0
0330	Сера дионсид (Ангидрид сернистый)	идрид се	PHMCTB	(M)		0.1000000	0.810000	1	0.18		57.00	0.50	00'0		00'0	00'0
0337	Углерод оксид	т оксид				0,2583333	2,106000	1	0.05		27,00	0.50	00'0		00'0	00'0
0703	Бенз/а/пирен (3,4-Бензпирен)	.4-Бензп	(нафи			0.0000003	0.000003	+	0,03		27.00	05.0	00'0	_	00'0	00'0
1325	Формальдегид	ьдегид				0.0028333	0.023166	1	0,05		57.00	0.50	00'0		00'0	00'0
2732	Керосин	CMH				0.0690833	0.555498	+ 4	0,05		57.00	0,50	00:0		00'0	00'0
% 6105	Строительная техника и транспорт	÷	m	'n	00'0			1,29		00'5		7	1,1 1284465,1	442672,80	1284675,2	442808.30
2000	and the second	and the second	9			Distance Jefest	Distance As	14			Лето			60	Зима	
NOM SHEE	DanweroBarne Berieg	oalmaa au	000			paopoc, (r/c) balopoc, (r/r)	peropoc, (1		CM/THK	316	Xm	m)	CM/TIAIK	ДК	Xm	-F
0301	Азоте диоксид (Азот (IV) оксид)	ASOT (IV)	оксид)			0.0532396	0.464006	1	1.23		28.50	0.50	00'0		000	00'0

				00'0
00'0	00'0	00'0	00'0	00'0
00'0	00'0	00'0	00'0	0.00
0.50	0.50	0.50	0,50	05'0
28.50	28.50	28.50	28,50	28 50
0,10	0,23	90'0	0,04	90'0
		÷	è	è
0.075362	0.065159	0.047171	0,385589	0.110825
0.0086466	0,0075028	0.0054217	0,0444172	0,0127606
Азот (II) оксид (Азота оксид)	Углерод (Связа)	Серв диоксид (Ангидрид сернистый)	Углерод оксид	Керосин
0304	0328	0330	0337	2732

Выбросы источников по веществам

Типы источников:

- 1 Точечный;
- 2 Линейный:
- 3 Неорганизованный;
- 4 Совокупность точечных источников;
- 5 С зависимостью массы выброса от скорости ветра, 6 - Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок); 8 - Автомагистраль (неорганизованный линейный);9 - Точечный, с выбросом в бок;
- 10 Свеча.

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

NΩ	Ne	Nο		Выброс	(21)		Лето			Зима	
nn.	цех.	ист,	Тив	(r/c)	,	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
dia.	(t)	6101	3	0,0016410	1	0,16	11,40	0,50	0,00	0,00	0,00
	Ит	oro:	- 11	0,0016410		0,16			0,00		

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

No	No	No	1	Выброс	la.		Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	Е	Ст/ПДК	Xm	Um	ст/пдк	Xm	Um
1	1	6101	3.	0,0001287	1	0,51	11.40	0,50	0,00	0.00	0,00
	Ит	oro:	- 1	0,0001287		0,51			0,00	-	

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

N₂	No	No	29	Выброс	VC:		Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
4	19	4	97	0,1706667	4	0,42	112,96	4,97	0,00	0.00	0,00
1	di i	6101	3	0,0015938	-(:-	0,31	11,40	0,50	0,00	0.00	0,00
1	14	6104	3	0,2560000	1	1,18	57,00	0,50	0,00	0,00	0,00
1	+	6105	3	0,0532396	1	1,23	28,50	0,50	0,00	0,00	0,00
	Ит	oro:		0,4815001	-	3,14			0,00		

Вещество: 0304 Азот (II) оксид (Азота оксид)

Nº	No	No		Выброс	Tur.	1111111	Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	+	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	1	nation of	0,0277333	1	0,03	112.96	4,97	0,00	0,00	0,00
1	-1	6104	3	0,0416000	1	0.10	57,00	0,50	0,00	0.00	0,00
1	31.	B105	3	0,0086466	1	0,10	28,50	0,50	0,00	0,00	0,00
	Ит	oro:		0,0779799		0,23			0,00		

Вещество: 0328 Углерод (Сажа)

No	No	No	Z-H	Выброс	la S		Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
4	1	1	1	0,0079444	1	0.03	112,96	4,97	0,00	0,00	0.00
1	1	6104	3	0.0119167	1	0.07	57,00	0,50	0,00	0.00	0,00
4	1	6105	3	0,0075028	1	0,23	28,50	0,50	0,00	0,00	0,00
	Ит	ого:		0,0273639		0,33			0,00		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

NΩ	No	No	255	Выброс			Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	-1	1	0,0666667	1	0.07	112,96	4.97	0,00	0.00	0,00
1	1	6104	3	0,1000000	1	0,18	57,00	0.50	0,00	0.00	0,00
1	1	6105	3	0,0054217	1	0,05	28,50	0,50	0,00	0,00	0,00
1	Ит	oro:		0,1720884		0,30	7 77		0,00		

Вещество: 0337 Углерод оксид

No	No	No		Выброс			Лето			Зима	
nn.	цех	ист.	Tun	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	-1		0,1722222	1	0,02	112,96	4.97	0,00	0.00	0.00
1	1	6101	3	0,0078507	1	0.06	11,40	0,50	0,00	0.00	0,00
1	1	6104	3	0,2583333	1	0.05	57,00	0,50	0,00	0,00	0,00
4	1	6105	3	0,0444172	N.	0,04	28,50	0,50	0,00	0,00	0,00
	Итого: 0,48			0,4828234	100	0,17			0,00		- +

Вещество: 0342 Фториды газообразные

N₂	No	No		Выбрас	5		Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
4.	1	6101	3	0,0005490	1	1,08	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0005490		1,08			0,00		

Вещество: 0344 Фториды плохо растворимые

No	No	No	اللح	Выбрас	tan l		Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	6101	3	0,0002361	1	0,05	11.40	0,50	0,00	0.00	0,00
	Ит	oro:		0,0002361		0,05			0,00		

Вещество: 0621 Метилбензол (Толуол)

No	Ne	ŃΩ		Выброс	62.1		Лето			Зима	
пл. цех.	100000	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
4.	1	6102	3	0,3143056	1	20,58	11,40	0,50	0,00	0,00	0,00
	Ит	oro:		0,3143056		20,58			0,00		

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

NΩ	No	No.		Выбрас	10		Лето			Зима	
	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	-f	41	0,0000002	1	0.01	112,96	4,97	0,00	0.00	.0,00
1	1	6104	3	0,0000003	1	0.03	57,00	0,50	0,00	0.00	0,00
	Ит	ого:		0,0000005		0,04			0,00		

Вещество: 1210 Бутилацетат

No	No	No	25	Выброс		1	Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	6102	3	0,0608333	1	23,90	11,40	0,50	0,00	0,00	0,00
	Ит	ого:		0,0608333		23,90			0,00		

Вещество: 1325 Формальдегид

No	Ng	Nº	last!	Выброс	-		Лето			Зима	
	цех.	ист.	Тип	(r/c)		ст/пдк	Xm	Um	Ст/ПДК	Xm	Um
1	1	4	- 1	0,0018889	1	0,02	112,96	4,97	0,00	0,00	0,00
1	1	6104	3	0,0028333	1	0,05	57,00	0,50	0,00	0,00	0,00
	Ит	oro:		0,0047222		0,07			0,00		

Вещество: 1401 Пропан-2-он (Ацетон)

Nº	No	Nº		Выбрес	T		Лето			Зима	- 11
nn.	цех.	ист.	Тип	(r/c)	*	Ст/ПДК	Хm	Um	Ст/ПДК	Xm	Um
4	4	6102	3-	0,1318056	1	14,80	11,40	0,50	0,00	0.00	0,00
	Ит	pro:		0,1318056		14,80			0,00		

Вещество: 1411 Циклогексанон

Nº	No	No	L.Jiff	Выброс	125		Лето			Зима	
	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	6102	3-	0,0269771	1	26,50	11,40	0,50	0,00	0,00	0,00
	Ит	Dro:		0,0269771		26,50			0,00		

Вещество: 2732 Керосин

Nº	No	Nº		Выброс	301		Лето			Зима	
nn.	цех.	I MU	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um		
4		- 1	4	0,0460556	1	0,02	112,96	4,97	0,00	0,00	0,00
4	1	6104	3	0,0690833	1	0,05	57,00	0,50	0,00	0,00	0,00
21.1	4	6105	3	0,0127606	1	0,05	28,50	0,50	0,00	0,00	0,00
	Ит	oro:		0,1278995		0,12			0,00		

Вещество: 2902 Взвешенные вещества

Nο	Ne	No.		Выброс	12	-	Лето			Зима	
nn.	цех.	ист.	Tun	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
4	1	6102	3	0,0645833	3	15,22	5,70	0,50	0,00	0.00	0,00
	Ит	ого:		0,0645833		15,22			0,00	100	

Вещество: 2907 Пыль неорганическая >70% SiO2

NΩ	No	No		Выброс	2		Лето			Зима	-11
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	6103	3	0,0654733	3	51,45	5,70	0,50	0,00	0,00	0,00
	Ит	oro:		0,0654733		51,45			0,00		

Вещество: 2908 Пыль неорганическая: 70-20% SiO2

Ne	No	No.		Выброс	_	-	Лето		Зима		
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	4	6101	3	0,0001181	3	0,05	5,70	0,50	0,00	0,00	0,00
1	11	6103	3	0,1468729	3	57,70	5,70	0,50	0,00	0,00	0,00
	Ит	oro:		0,1469910		57,75			0,00		

Выбросы источников по группам суммации

Типы источников:

- 1 Точечный;
- 2 Линейный:
- 3 Неорганизованный;
- 4 Совокупность точечных источников;
- 5 С зависимостью массы выброса от скорости ветра,
- 6 Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок);
- 8 Автомагистраль (неорганизованный линейный);9 Точечный, с выбросом в бок;
- 10 Свеча.

Группа суммации: 6053 Фтористый водород и плохорастворимые соли фтора

No	No	No		Код	Выброс	15		Лето		Зима		
	цех.	100000	Тип	B-8a	(r/c)	F	ст/пдк	Xm	Um	Ст/ПДК	Xm	Um
1	4	6101	3	0342	0,0005490	4	1,08	11,40	0;50	0,00	0,00	0,00
4	4	6101	3	0344	0,0002361	4	0,05	11,40	0;50	0,00	0,00	0,00
	Итого: 0,0007851			1,12			0,00					

Группа суммации: 6204 Азота диоксид, серы диоксид

Nο	No	Nº	45	Код	Выброс			Лето		Зима			
nn.	цех.	ист.	Тип	в-ва	(r/c)	F	Ст/ПДК	Хm	Um	Ст/ПДК	Xm	Um	
1	1	4	1	0301	0,1706667	1	0,42	112,96	4,97	0,00	0,00	0,00	
1	4	6101	3	0301	0,0015938	t.	0,31	11,40	0,50	0,00	0,00	0,00	
1	1	6104	3	0301	0,2560000	1	1,18	57,00	0,50	0,00	0,00	0,00	
4	đ	6105	3	0301	0,0532396	1	1,23	28,50	0,50	0,00	0,00	0,00	
1	a.	1	t	0330	0,0666667	1	0,07	112,96	4,97	0,00	0,00	0,00	
1	1	6104	3	0330	0,1000000	1	0,18	57,00	0,50	0,00	0.00	0,00	
1	t i	6105	3	0330	0,0054217	1	0,05	28,50	0,50	0,00	0.00	0,00	
		Итог	o:		0,6535885		2,15			0,00			

Суммарное значение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,60

Группа суммации: 6205 Серы диоксид и фтористый водород

NΩ	No	No		Код	Выброс			Пето			Зима	
nл.	цех.	ист.	Тип	B-8a	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	1	1	0330	0,0666667	1	0,07	112,96	4,97	0,00	0.00	0,00
1	1	6104	3	0330	0,1000000	1	0,18	57,00	0,50	0,00	0,00	0,00
4	1	6105	3	0330	0,0054217	1	0,05	28,50	0,50	0,00	0,00	0,00
1	1	6101	3	0342	0,0005490	1	1,08	11,40	0,50	0,00	0,00	0,00
14.		Итог	o:		0,1726374		0,77			0,00		

Суммарное эначение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,80

Расчет проводился по веществам (группам суммации)

			Пределы	но допуст	имая конце	ентрация		Поправ.	Фоновая	
Код	Наименование вещества		максимал нцентраци			счет средн онцентраци	4.50	коэф. к ПДК		центр.
		Тип	Спр. эначение	Исп. в расч.	Тип	Спр. значение	Исп. в расч.	обув*	Учет	Интерп,
0123	диЖелезо трисксид (Железа оксид) (в пересчете на железо)	ПДК с/с	0,040	0,400	пдк с/с	0,040	0,040	- 1	Нет	Нет
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид)	ПДК м/р	0,010	0.010	пдк с/с	0,001	0.001	1	Нет	Нет
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0,200	0,200	ПДК с/с	0,040	0,040	1	Да	Нет
0304	Азот (II) оксид (Азота оксид)	ПДК м/р	0,400	0,400	ПДК с/с	0,060	0,060	- 1	Да	Нет
0328	Углерод (Сажа)	ПДК м/р	0,150	0,150	ПДК с/с	0,050	0,050	- 1	Нет	Нет
0330	Сера диоксид (Ангидрид сернистый)	пдк м/р	0.500	0,500	пдк с/с	0,050	0,050	2	Да	Нет
0337	Углерод оксид	ПДК м/р	5,000	5,000	ПДК с/с	3,000	3,000	- 1	Дв	Нет
0342	Фториды газообразные	ПДК м/р	0,020	0,020	пдк е/с	0,005	0,005	- 1	Нет	Нет
0344	Фториды глохо растворимые	ПДК м/р	0,200	0,200	пдк е/с	0,030	0,030	- 1	Нет	Нет
0621	Метилбензол (Толуол)	ПДК м/р	0,600	0,600	ПДК м/р	0,600	0,060	4	Нет	Нет
0703	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с	1,000E-06	1,000E-05	ПДК с/с	1.000E-06	1.000E-06	1	Нет	Нет
1210	Бутилацетат	ПДК м/р	0,100	0,100	ПДК м/р	0,100	0,010	1	Нет	Нет
1325	Формальдегид	ПДК м/р	0,050	0,050	ПДК с/с	0,010	0,010	1	Нет	Нет
1401	Пропан-2-он (Ацетон)	ПДК м/р	0,350	0,350	ПДК м/р	0,350	0,035	- 1	Нет	Нет
1411	Циклогексанон	ПДК м/р	0,040	0,040	ПДК м/р	0,040	0,004	1	Нет	Нет
2732	Керосин	ОБУВ	1,200	1,200	ОБУВ	1,200	1,200	1	Нет	Нет
2902	Взвешенные вещества	ПДК м/р	0,500	0,500	ПДК с/с	0,150	0,150	- 1	Да	Нет
2907	Пыль неорганическая >70% SiO2	ПДК м/р	0,150	0,150	ПДК с/с	0,050	0,050	1	Нет	Нет
2908	Пыль неорганическая: 70-20% SiO2	ПДК м/р	0,300	0.300	ПДК с/с	0,100	0,100	- 1	Нет	Нет
6053	Группа суммации: Фтористый водород и плохорастворимые соли фтора	Группа суммации			Группа суммации	-		í	Нет	Нет
6204	Группа неполной суммации с коэффициентом "1,6". Азота диоксид, серы диоксид	Группа суммации			Группа суммации		111	13	Да	Нет
6205	Группа неполной суммации с коэффициентом "1,8": Серы диоксид и фтористый водород	Группа суммации		1	Группа суммации	Less	17	1	Нет	Нет

[&]quot;Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

	Was adapted			- 114	Координать	(M)
№ поста	Наименован	ние		- 1	х.	Y
3 1	Новороссийск			1, 12	0,00	0,00
V	Magazinasanga samasan		Фонс	овые концентра	ции	
Код в-ва	Наименование вещества	Штиль	Север	Восток	Юг	Запад
0301	Азота диоксид (Азот (IV) оксид)	0,080	0,110	0,090	0,060	0,060
0304	Азот (II) оксид (Азота оксид)	0,120	0,050	0,050	0,070	0,060
0330	Сера диоксид (Ангидрид сернистый)	0,002	0,002	0,002	0,002	0,002

2,000

0.400

2,000

0,400

2,000

0,300

2,000

0,300

2,000

0,400

0337

2902

Углерод оксид

Взвешенные вещества

Перебор метеопараметров при расчете

Набор-автомат

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

			Полное с	описание пло	цадки		1000			
Код	TAID	Координаты середины 1-й стороны (м)		Координаты середины 2-й стороны (м)		Ширина	Зона влияния	Шаг (м)		Высота (м)
		х	Υ	X	Y	(M)	(M)	По ширине	По длине	p. 7
2	Полное описание	1283568,40	442942,50	1285717,70	442942,40	2163,50	0,00	50,00	50,00	2,00

Расчетные точки

	Координ	аты (м)	A	***************************************	Acres de la
Код	х	Υ	Высота (м)	Тип точки	Комментарий
1	1284447,71	442660,35	2,00	на границе СЗЗ	
- 2	1284404,59	442769,30	2,00	на границе СЗЗ	
3	1284406,16	442888,02	2,00	на границе СЗЗ	
4	1284454,64	443003,51	2,00	на границе СЗЗ	
5	1284534,78	443085,91	2,00	на границе СЗЗ	
6	1284645,43	443136,00	2,00	на границе СЗЗ	
7	1284763,25	443139,53	2,00	на границе СЗЗ	
8	1284874,17	443094,62	2,00	на границе СЗЗ	
9	1284958,97	443006,03	2,00	на границе СЗЗ	
10	1284998,99	442895,43	2,00	на границе СЗЗ	
11	1284993,71	442775,25	2,00	на границе СЗЗ	
12	1284946,59	442668,65	2,00	на границе СЗЗ	
13	1284863,26	442584,68	2,00	на границе СЗЗ	
14	1284755,38	442537,37	2,00	на границе СЗЗ	
15	1284639,24	442534,45	2,00	на границе СЗЗ	
16	1284530,73	442577,42	2,00	на границе СЗЗ	
17		442671,78	2,00	точка пользователя	
18	1284362,18	442749,36	2,00	точка пользователя	
19	1284351,25	442542,22	2,00	на границе жилой зоны	

Результаты расчета по веществам (расчетные точки)

Типы точек:

- 0 расчетная точка пользователя 1 точка на границе охранной зоны
- 2 точка на границе ократной зоны 3 точка на границе гроизводственной зоны 4 на границе жилой зоны 5 на границе застройки

Вещество: 0123 диЖелезо триоксид (Железа оксид) (в пересчете на железо)

N⊵	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	5,74E-03	262	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	5,66E-03	235	9,23	0,00	0,00	3
11	1204993,7	442775,25	2,00	5,54E-03	290	9,23	0,00	0,00	3
8	1204074,1	443094,62	2,00	5,37E-03	207	9,23	0,00	0,00	3
12	1204940,5	442668,65	2,00	5,07E-03	315	9,23	0,00	0,00	3
7	1204703,2	443139,53	2,00	4,97E-03	182	9,23	0,00	0,00	3
6	1204040,4	443136,00	2,00	4,66E-03	158	14,00	0,00	0,00	3
13	1204003,2	442584,68	2,00	4,60E-03	339	14,00	0,00	0,00	3
5	1284034,7	443085,91	2,00	4,37E-03	135	14,00	0,00	0,00	3
14	1284/33,3	442537,37	2,00	4,22E-03	0	14,00	0,00	0,00	3
4	1284404,6	443003,51	2,00	4,13E-03	115	14,00	0,00	0,00	3
15	1284039,2	442534,45	2,00	3,91E-03	19	14,00	0,00	0,00	3
3	1284400,1	442888,02	2,00	3,89E-03	94	14,00	0,00	0,00	3
2	1284404,5	442769,30	2,00	3,73E-03	75	14,00	0,00	0,00	3
16	1284330,7	442577,42	2,00	3,73E-03	38	14,00	0,00	0,00	3
1	1204447,7	442660,35	2,00	3,66E-03	57	14,00	0,00	0,00	3
17	1264430,0	442671,78	2,00	3,62E-03	59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00	3,22E-03	74	14,00	0,00	0,00	0
19	1204301,2	442542,22	2,00		52	14,00	0,00	0,00	4

Вещество: 0143 Марганец и его соединения (в пересчете на марганца (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,02	262	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,02	235	9,23	0,00	0,00	3
11	1204995,1	442775,25	2,00	0,02	290	9,23	0,00	0,00	3
8	1204014,1	443094,62	2,00	0,02	207	9,23	0,00	0,00	3
12	1204940,5	442668,65	2,00	0,02	315	9,23	0,00	0,00	3
7	1204/03/2	443139,53	2,00	0,02	182	9,23	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,01	158	14,00	0,00	0,00	3
13	1204000,2	442584,68	2,00	0,01	339	14,00	0,00	0,00	3
5	1204004,7	443085,91	2,00	0,01	135	14,00	0,00	0,00	
14	1204700,3	442537,37	2,00	0,01	0	14,00	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,01	115	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00	0,01	19	14,00	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,01	94	14,00	0,00	0,00	3
2	1204404,0	442769,30	2,00		75	14,00	0,00	0,00	3
16	1204000,7	442577,42	2,00	0,01	38	14,00	0,00	0,00	3

1	120444/,/	442660,35	2,00	0,01	57	14,00	0,00	0,00	3
17	1204433,3	442671,78	2,00	0,01	59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00	0,01	74	14,00	0,00	0,00	0
19	1284331,2	442542,22	2,00	7,31E-03	52	14,00	0,00	0,00	4

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	120444/,/	442660,35	2,00	0,84	55	2,57	0,19	0,45	3
19	1204301,2	442542,22	2,00	0,80	45	3,92	0,38	0,55	4
16	1204030,7	442577,42	2,00	0,79	15	3,92	0,39	0,55	3
17	1204433,3	442671,78	2,00	0,78	60	2,57	0,23	0,45	0
15	1204008,2	442534,45	2,00	0,75	343	5,99	0,42	0,55	3
14	1204/00,3	442537,37	2,00	0,72	319	5,99	0,44	0,55	3
2	1204404,3	442769 30	2,00	0,67	97	5,99	0,30	0,45	3
18	1204302,1	442749,36	2,00	0,66	90	5,99	0,31	0,45	0
9	1204900,9	443006,03	2,00	0,65	240	1,10	0,24	0,40	3
3	1204400,1	442888,02	2,00	0,64	130	5,99	0,32	0,45	3
8	1204074,1	443094,62	2,00	0,64	217	1,10	0,24	0,40	3
13	1204003,2	442584,68	2,00	0,63	315	2,57	0,49	0,55	3
12	1284940,9	442668,65	2,00	0,61	315	2,57	0,51	0,55	- 3
10	1204990,9	442895,43	2,00	0,60	260	1,10	0,26	0,40	3
7	1204/03,2	443139,53	2,00	0,59	198	1,10	0,27	0,40	3
4	1204404,0	443003,51	2,00	0,57	132	0,55	0,29	0,40	3
6	1204040,4	443136,00	2,00	0,57	174	0,55	0,29	0,40	3
11	1204995,7	442775,25	2,00	0,56	283	0,55	0,29	0,40	3
5	1204054,7	443085,91	2,00	0,56	154	0,55	0,29	0,40	3

Вещество: 0304 Азот (II) оксид (Азота оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	7284447,7	442660,35	2,00	0,34	54	0,58	0,28	0,30	3
17	1204433,3	442671,78	2,00	0,33	62	0,58	0,28	0,30	0
16	1204030,7	442577,42	2,00	0,32	21	1,16	0,29	0,30	3
9	1204900,9	443006,03	2,00	0,32	240	1,16	0,29	0,30	3
19	1204001,2	442542,22	2,00	0,32	47	1,76	0,29	0,30	4
2	1204404,5	442769,30	2,00	0,32	82	0,58	0,29	0,30	3
8	1204074,1	443094,62	2,00	0,32	217	1,16	0,29	0,30	3
18	1204302,1	442749,36	2,00	0,32	81	1,16	0,29	0,30	0
10	1204990,9	442895,43	2,00		260	1,16	0,29	0,30	3
3	1204400,1	442888,02	2,00	0,32	107	0,58	0,29	0,30	3
7	1204/03,2	443139,53	2,00	0,32	198	1,16	0,29	0,30	3
15	1204039,2	442534,45	2,00	0,31	358	0,58	0,29	0,30	3
4	1204404,0	443003,51	2,00		133	0,58	0,29	0,30	3
6	1204040,4	443136,00	2,00	0,31	175	0,58	0,29	0,30	3
11	1204995,7	442775,25	2,00	0,31	283	0,58	0,29	0,30	3
5	1204034,7	443085,91	2,00	0,31	154	0,58	0,29	0,30	3
14	1204/00,3	442537,37	2,00		338	0,58	0,29	0,30	3
12	1204940,0	442668,65	2,00	0,31	301	0,58	0,29	0,30	3

13	1204663,2 442584.68	2.00	0.31	319	0.58	0.29	0.30	3
7.5	6 7 7000 1100	-1-2	- Fig. 6	4	- FI-W	S)eee	8183	-

Вещество: 0328 Углерод (Сажа)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,10	55	0,85	0,00	0,00	3
17	1204433,5	442671,78	2,00	0,08	65	0,85	0,00	0,00	C
16	1204030,7	442577,42	2,00	0,04	18	0,85	0,00	0,00	3
19	1284351,2	442542,22	2,00	0,04	47	2,83	0.00	0,00	
2	1284404,0	442769,30	2,00	0.04	93	0,50	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,04	88	0,85	0,00	0,00	0
9	1204900,9	443006,03	2,00	0,03	239	1,27	0,00	0,00	3
8	1204074,1	443094,62	2,00	-	218	1,27	0,00	0,00	3
15	1204039,2	442534,45	2,00	0,03	352	0,85	0,00	0,00	3
3	1204400,1	442888,02	2,00		116	0,50	0,00	0,00	3
10	1204990,9	442895,43	2,00	0,03	259	0,85	0,00	0,00	3
7	1204703,2	443139,53	2,00	0,03	198	0,85	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,02	145	0,85	0,00	0,00	- 3
14	1204700,3	442537,37	2,00	0,02	328	0,85	0,00	0,00	3
6	7254040,4	443136,00	2,00	0,02	182	0,85	0,00	0,00	3
5	1204034,7	443085,91	2,00	0,02	165	0,85	0,00	0,00	- 3
11	1284993,1	442775,25	2,00		275	0,85	0,00	0,00	- 3
13	1204000,2	442584,68	2,00	0,02	308	0,85	0,00	0,00	3
12	1204940,0	442668,65	2,00		287	1,27	0,00	0,00	3

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

N⊵	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,08	55	4,55	8,00E-04	4,00E-03	- 3
17	1204430,0	442671,78	2,00	0,07	60	4,55	8,00E-04	4,00E-03	0
16	1204000,7	442577,42	2,00	0,06	15	4,55	8,00E-04	4,00E-03	3
9	1204900,9	443006,03	2,00	0,06	240	1,48	8,00E-04	4,00E-03	3
19	1204301,2	442542,22	2,00	0,06	47	4,55	8,00E-04	4,00E-03	4
8	1204074,1	443094,62	2,00		218	1,48	8,00E-04	4,00E-03	3
2	1204404,5	442769,30	2,00	0,05	98	4,55	8,00E-04	4,00E-03	3
18	1204302,1	442749,36	2,00	0,05	91	6,62	8,00E-04	4,00E-03	0
10	1204990,9	442895,43	2,00	0,05	263	0,74	8,00E-04	4,00E-03	3
15	1204059,2	442534,45	2,00	0,05	343	6,62	8,00E-04	4,00E-03	3
3	1204400,1	442888,02	2,00	0,05	130	6,62	8,00E-04	4,00E-03	3
7	1204/03/2	443139,53	2,00	0,05	194	0,74	8,00E-04	4,00E-03	3
14	1204/00,3	442537,37	2,00		319	6,62	8,00E-04	4,00E-03	3
4	1204404,0	443003,51	2,00	0,04	155	6,62	8,00E-04	4,00E-03	3
6	1204040,4	443136,00	2,00		174	0,74	8,00E-04	4,00E-03	3
11	1204993,1	442775,25	2,00		284	0,74	8,00E-04	4,00E-03	3
5	1204004,/	443085,91	2,00		150	0,50	8,00E-04	4,00E-03	- 3
13	1204003,2	442584,68	2,00		299	6,62	8,00E-04	4,00E-03	3
12	1204940,5	442668,65	2,00		303	0,74	8,00E-04	4,00E-03	3

Вещество: 0337 Углерод оксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,42	54	0,95	0,39	0,40	3
17	1284435,5	442671,78	2,00	0,41	60	0,95	0,39	0,40	0
19	1204001,2	442542,22	2,00	0,41	47	4,43	0,39	0,40	4
9	1204906,9	443006,03	2,00	0,41	239	1,40	0,39	0,40	3
16	1284530,7	442577,42	2,00	0,41	23	0,95	0,39	0,40	3
8	1204014,1	443094,62	2,00		216	0,95	0,39	0.40	3
2	1284404,5	442769,30	2,00	0,41	80	0,95	0,39	0,40	3
10	1204990,9	442895,43	2,00	0,41	261	0,95	0,39	0,40	3
18	1204302,1	442749,36	2,00		79	0,95	0,39		0
7	1204/03,2	443139,53	2,00	0,41	195	0,95	0,39		3
3	1204400,1	442888,02	2,00	0,41	106	0,50	0,39	0,40	3
15	1204039,2	442534,45	2,00	0,41	343	6,50	0,39	0,40	3
11	1204993,7	442775,25	2,00	0,41	283	0,95	0,40	0,40	3
4	1204404,0	443003,51	2,00	0,41	130	0,50	0,40	0,40	3
6	1204040,4	443136,00	2,00	0,41	172	0,50	0,40	0,40	3
14	1284700,3	442537,37	2,00	0,41	319	6,50	0,40	0,40	3
5	1204034,7	443085,91	2,00	0,41	151	0,50	0,40	0,40	3
12	1204940,5	442668,65	2,00		304	0,50	0,40	0,40	3
13	1204000,2	442584,68	2,00	0,41	299	6,50	0,40		3

Вещество: 0342 Фториды газообразные

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,04	262	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,04	235	9,23	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,04	290	9,23	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,04	207	9,23	0,00	0,00	3
12	1284940,0	442668,65	2,00	0,03	315	9,23	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,03	182	9,23	0,00	0,00	3
6	1284640,4	443136,00	2,00		158	14,00	0,00	-	3
13	1204003,2	442584,68	2,00		339	14,00	0,00		3
5	1284054,7	443085,91	2,00		135	14,00	0,00	0,00	3
14	1204700,3	442537,37	2,00		0	14,00	0,00	0,00	3
4	1204404,6	443003,51	2,00		115	14,00	0,00	0,00	3
15	1204059,2	442534,45	2,00	0,03	19	14,00	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,03	94	14,00	0,00	0,00	3
2	1204404,5	442769,30	2,00		75	14,00	0.00	0,00	3
16	1284030,7	442577,42	2,00		38	14,00	0,00	0,00	3
1	1204441,1	442660,35	2,00		57	14,00	0,00	0,00	3
17	1204400,0	442671,78	2,00		59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00		74	14,00	0,00	0,00	0
19	1204301,2	442542,22	2,00		52	14,00	0,00	0,00	4

Вещество: 0344 Фториды плохо растворимые

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	1,65E-03	262	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	1,63E-03	235	9,23	0,00	0,00	3
11	1204995,7	442775,25	2,00	1,59E-03	290	9,23	0,00	0,00	3
8	12040/4,1	443094,62	2,00	1,54E-03	207	9,23	0,00	0,00	3
12	1284940,5	442668,65	2,00	1,46E-03	315	9,23	0,00	0,00	3
7	1204/03,2	443139,53	2,00	1,43E-03	182	9,23	0,00	0,00	3
6	1284843,4	443136,00	2,00	1,34E-03	158	14,00	0,00	0,00	3
13	1204000,2	442584,68	2,00	1,32E-03	339	14,00	0,00	0,00	3
5	1204034,7	443085,91	2,00	1,26E-03	135	14,00	0,00	0,00	3
14	1204/00,5	442537,37	2,00		0	14,00	0,00	0,00	3
4	1204404,0	443003,51	2,00	1,19E-03	115	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00	1,12E-03	19	14,00	0,00	0,00	3
3	1204400,1	442888,02	2,00	1.12E-03	94	14,00	0,00	0,00	3
2	1204404,5	442769,30	2,00	1,07E-03	75	14,00	0,00	0,00	3
16	1204000,7	442577,42	2,00	1,07E-03	38	14,00	0,00	0,00	3
1	1284447,7	442660,35	2,00	1,05E-03	57	14,00	0,00	0,00	3
17	1204430,0	442671,78	2,00		59	14,00	0,00	0,00	C
18	1204302,1	442749,36	2,00	9,27E-04	74	14,00	0,00	0,00	0
19	1284301,2	442542,22	2,00	6,71E-04		14,00	0,00	0,00	. 4

Вещество: 0621 Метилбензол (Толуол)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,62	259	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,61	235	14,00	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,60	284	9,23	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,59	211	14,00	0,00	0,00	3
12	1284940,0	442668,65	2,00	0,57	308	14,00	0,00	0,00	3
7	1204/03,2	443139,53	2,00		188	14,00	0,00	0,00	3
3	1284400,1	442888,02	2,00		98	14,00	0,00	-	3
13	1204003,2	442584,68	2,00		331	14,00	0,00		3
2	1284404,5	442769,30	2,00		77	14,00	0,00	0,00	3
16	1204550,7	442577,42	2,00		36	14,00	0,00	0,00	3
14	1204700,3	442537,37	2,00		354	14,00	0,00	0,00	3
6	1204040,4	443136,00	2,00		165	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00		15	14,00	0,00	0,00	3
1	1204447,8	442660,35	2,00		56	14,00	0.00	0,00	3
4	1284404,0	443003,51	2,00		121	14,00	0,00	0,00	3
5	1284004,1	443085,91	2,00		143	14,00	0,00	0,00	3
17	1204400,5	442671,78	2,00		59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00		76	14,00	0,00	0,00	0
19	1204301,2	442542,22	2,00		51	14,00	0,00	0,00	4

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,01	55	4,85	0,00	0,00	3
17	1204430,5	442671,78	2,00	9,88E-03	60	4,85	0,00	0,00	0
16	1204000,7	442577,42	2,00	8,51E-03	15	4,85	0,00	0,00	3
9	1204900,9	443006,03	2,00	8,17E-03	241	0,84	0,00	0,00	3
8	1284874,1	443094,62	2,00	7,97E-03	216	0,84	0,00	0,00	3
19	1204301,2	442542,22	2,00	7,91E-03	47	4,85	0,00	0,00	4
2	1284404,9	442769,30	2,00		98	4,85	0,00	0,00	3
18	1204302,1	442749,36	2,00	7,05E-03	91	4,85	0,00	0,00	0
10	1204990,9	442895,43	2,00	7,05E-03	263	0,84	0,00	0,00	3
15	1204059,2	442534,45	2,00		343	4,85	0,00	0,00	3
3	1204400,1	442888,02	2,00	6,82E-03	130	6,90	0,00	0,00	3
7	1204/03,2	443139,53	2,00	6,65E-03	194	0,84	0,00	0,00	3
14	1204/00,3	442537,37	2,00	5,93E-03	319	6,90	0,00	0,00	3
4	1204404,0	443003,51	2,00	5,84E-03	155	6,90	0,00	0,00	3
11	1204993,7	442775,25	2,00	5,69E-03	285	0,84	0,00	0,00	3
6	1284840,4	443136,00	2,00	5,64E-03	174	0,84	0,00	0,00	3
5	1284034,7	443085,91	2,00	5,42E-03	149	0,50	0,00	0,00	3
13	1284803,2	442584,68	2,00	5,09E-03	299	6,90	0,00	0,00	3
12	1204940,0	442668,65	2,00	4,89E-03	304	0,84	0,00	0,00	3

Вещество: 1210 Бутилацетат

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр, ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,72	259	9,23	0,00	0,00	3
9	1264906,9	443006,03	2,00	0,70	235	14,00	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,69	284	9,23	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,69	211	14,00	0,00	0,00	3
12	1284940,5	442668,65	2,00	0,66	308	14,00	0,00	0,00	3
7	1204703,2	443139,53	2,00	0,65	188	14,00	0,00	0,00	3
3	1284400,1	442888,02	2,00		98	14,00	0,00	-	3
13	1204003,2	442584,68	2,00	-	331	14,00	0,00		3
2	1284404,5	442769,30	2,00		77	14,00	0,00	0,00	3
16	1204050,7	442577,42	2,00		36	14,00	0,00	0,00	3
14	1204700,3	442537,37	2,00		354	14,00	0,00	0,00	3
6	1204040,4	443136,00	2,00		165	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00		15	14,00	0,00	0,00	3
1	1204447,8	442660,35	2,00		56	14,00	0.00	0,00	3
4	1204404,0	443003,51	2,00		121	14,00	0,00	0,00	3
5	1284034,7	443085,91	2,00		143	14,00	0,00	0,00	3
17	1204400,5	442671,78	2,00		59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00		76	14,00	0,00	0,00	0
19	1204301,2	442542,22	2,00		51	14,00	0,00	0,00	4

Вещество: 1325 Формальдегид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр, (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,02	55	4,85	0,00	0,00	3
17	1204450,5	442671,78	2,00	0,02	60	4,85	0,00	0,00	Ö
16	1204050,7	442577,42	2,00	0,02	15	4,85	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,02	241	0,84	0,00	0,00	3
8	1204074,1	443094,62	2,00	0,02	216	0,84	0,00	0,00	3
19	1204301,2	442542,22	2,00	0,01	47	4,85	0,00	0,00	4
2	1284404,0	442769,30	2,00	0,01	98	4,85	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,01	91	4,85	0,00	0,00	0
10	1204990,9	442895,43	2,00	0,01	263	0,84	0,00	0,00	3
15	1204000,2	442534,45	2,00	0,01	343	4,85	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,01	130	6,90	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,01	194	0,84	0,00	0,00	3
14	1204700,5	442537,37	2,00	0,01	319	6,90	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,01	155	6,90	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,01	285	0,84	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,01	174	0,84	0,00	0,00	3
5	1284034,7	443085,91	2,00	0,01	149	0,50	0,00	0,00	3
13	1284803,2	442584,68	2,00	9,62E-03	299	6,90	0,00	0,00	3
12	1284946,5	442668,65	2,00	9,24E-03	304	0,84	0,00	0,00	3

Вещество: 1401 Пропан-2-он (Ацетон)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр, ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,45	259	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,44	235	14,00	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,43	284	9,23	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,43	211	14,00	0,00	0,00	3
12	1284940,0	442668,65	2,00	0,41	308	14,00	0,00	0,00	3
7	1204703,2	443139,53	2,00	0,40	188	14,00	0,00	0,00	3
3	1284400,1	442888,02	2,00		98	14,00	0,00	-	3
13	1204003,2	442584,68	2,00		331	14,00	0,00		3
2	1284404,5	442769,30	2,00		77	14,00	0,00	0,00	3
16	1204050,7	442577,42	2,00		36	14,00	0,00	0,00	3
14	1204700,3	442537,37	2,00		354	14,00	0,00	0,00	3
6	1204040,4	443136,00	2,00		165	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00		15	14,00	0,00	0,00	3
1	1204447,9	442660,35	2,00		56	14,00	0.00	0,00	3
4	1204404,0	443003,51	2,00		121	14,00	0,00	0,00	3
5	1204004,1	443085,91	2,00		143	14,00	0,00	0,00	. 3
17	1204400,5	442671,78	2,00		59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00		76	14,00	0,00	0,00	.0
19	1204301,2	442542,22	2,00		51	14,00	0,00	0,00	4

Вещество: 1411 Циклогексанон

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,80	259	9,23	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,78	235	14,00	0,00	0,00	3
11	1204995,/	442775,25	2,00	0,77	284	9,23	0,00	0,00	3
8	1284874,1	443094,62	2,00		211	14,00	0,00	0,00	3
12	1284946,5	442668,65	2,00	0,73	308	14,00	0,00	0,00	3
7	1204/03,2	443139,53	2,00		188	14,00	0,00	0,00	3
3	1284400,1	442888,02	2,00		98	14,00	0,00	0,00	3
13	1204003,2	442584,68	2,00	0,70	331	14,00	0,00	0,00	3
2	1204404,5	442769,30	2,00		77	14,00	0,00	0,00	3
16	1204000,1	442577,42	2,00		36	14,00	0,00	0,00	3
14	1204/00,3	442537,37	2,00	0,69	354	14,00	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,69	165	14,00	0,00		3
15	1204009,2	442534,45	2,00	0,69	15	14,00	0,00	0,00	3
1	1204447,7	442660,35	2,00	0,68	56	14,00	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,68	121	14,00	0,00	0,00	3
5	1284034,7	443085,91	2,00	0,67	143	14,00	0,00	0,00	3
17	1204430,5	442671,78	2,00		59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00		76	14,00	0,00	0,00	0
19	1284301,2	442542,22	2,00		51	14,00	0,00	0,00	4

Вещество: 2732 Керосин

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,03	54	0,60	0,00	0,00	3
17	1204430,0	442671,78	2,00	0,03	61	0,60	0,00	0,00	0
19	1204501,2	442542,22	2,00	0,02	47	4,10	0,00	0,00	4
9	1204900,9	443006,03	2,00	0,02	240	1,20	0,00	0,00	3
16	1284030,7	442577,42	2,00	0,02	15	4,10	0,00	0,00	3
8	1204074,1	443094,62	2,00	0,02	217	1,20	0,00	0,00	3
2	1284404,5	442769,30	2,00	0,02	81	0,60	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,02	90	6,17	0,00	0,00	0
10	1204990,9	442895,43	2,00		260	1,20	0,00	0,00	3
15	1204059,2	442534,45	2,00	0,01	343	6,17	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,01	106	0,60	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,01	194	0,60	0,00	0,00	3
14	1204/00,3	442537,37	2,00	0,01	319	6,17	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,01	174	0,60	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,01	132	0,60	0,00	0,00	3
11	1204993,1	442775,25	2,00	0,01	283	0,60	0,00	0,00	3
5	1204334,7	443085,91	2,00		154	0,60	0,00	0,00	3
13	1204003,2	442584,68	2,00		299	6,17	0,00	0,00	3
12	1204940,0	442668,65	2,00	0,01	301	0,60	0,00	0,00	3

Вещество: 2902 Взвешенные вещества

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,92	259	14,00	0,72	0,80	3
9	1204900,9	443006,03	2,00	0,91	235	14,00	0,73	0,80	3
11	1204995,7	442775,25	2,00	0,91	284	14,00	0,73	0,80	3
12	1204940,5	442668,65	2,00	0,90	308	14,00	0,73	0,80	3
13	1204803,2	442584,68	2,00	0,90	331	14,00	0,73	0,80	3
14	1204/00,3	442537,37	2,00	0,89	354	14,00	0,74	0,80	3
15	1264639,2	442534,45	2,00	0,89	15	14,00	0,74	0,80	3
16	1204000,7	442577,42	2,00	0,89	36	14,00	0,74	0,80	3
8	1204074,1	443094,62	2,00	0,83	211	1,74	0,78	0,80	3
7	1204/03,2	443139,53	2,00	0,83	188	1,74	0,78	0,80	3
6	1204040,4	443136,00	2,00	0,83	165	1,74	0,78	0,80	3
5	1204004,7	443085,91	2,00	0,83	143	1,74	0,78	0,80	3
4	1204404,0	443003,51	2,00	0,82	121	1,74	0,78	0,80	3
3	1204400,1	442888,02	2,00	0,82	98	1,74	0,78	0,80	3
19	1204001,2	442542,22	2,00	0,82	45	14,00	0,78	0,80	4
2	1284404,3	442769,30	2,00	0,82	77	1,74	0,78	0,80	3
1	1204447,7	442660,35	2,00	0,82	56	1,74	0,78	0,80	3
17	1204430,5	442671,78	2,00	0,82	59	1,74	0,78	0,80	0
18	1204302,1	442749,36	2,00	0,82	76	1,74	0,79	0,80	0

Вещество: 2907 Пыль неорганическая >70% SiO2

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр, ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,87	264	14,00	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,86	234	14,00	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,81	293	14,00	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,79	205	14,00	0,00	0,00	3
12	1284940,5	442668,65	2,00	0,70	319	14,00	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,70	179	14,00	0,00	0,00	3
6	1284640,4	443136,00	2,00		155	14,00	0,00	-	3
13	1204003,2	442584,68	2,00		342	14,00	0,00		3
5	1204054,7	443085,91	2,00		133	14,00	0,00	0,00	3
14	1204100,3	442537,37	2,00	0,50	2	14,00	0,00	0,00	3
4	1204404,6	443003,51	2,00	0,48	113	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00	0,44	21	14,00	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,43	93	14,00	0,00	0,00	3
16	1204050,7	442577,42	2,00	0,40	39	14,00	0,00	0,00	3
2	1204404,3	442769,30	2,00	0,40	75	14,00	0,00	0,00	3
1	1204441,1	442660,35	2,00	0,39	57	14,00	0,00	0,00	. 3
17	1204400,0	442671,78	2,00	0,38	59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00		73	14,00	0,00	0,00	0
19	1204301,2	442542,22	2,00		52	14,00	0,00	0,00	4

Вещество: 2908 Пыль неорганическая: 70-20% SiO2

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,98	264	14,00	0,00	0,00	3
9	7204900,9	443006,03	2,00	0,96	234	14,00	0,00	0,00	3
11	1204995,7	442775,25	2,00	0,91	293	14,00	0,00	0,00	3
8	12040/4,1	443094,62	2,00		205	14,00	0,00	0,00	3
12	1284940,5	442668,65	2,00	0,79	319	14,00	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,78	179	14,00	0,00	0,00	3
6	1284840,4	443136,00	2,00	0,69	155	14,00	0,00	0,00	3
13	1204003,2	442584,68	2,00	0,66	342	14,00	0,00	0,00	3
5	1204334,7	443085,91	2,00	0,60	133	14,00	0,00	0,00	3
14	1204/00,5	442537,37	2,00	0,56	2	14,00	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,54	113	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00	0,49	21	14,00	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,48	93	14,00	0,00	0,00	3
16	1204000,7	442577,42	2,00	0,45	39	14,00	0,00	0,00	3
2	1204404,0	442769,30	2,00	0,45	75	14,00	0,00	0,00	3
1	1204447,7	442660,35	2,00	0,44	57	14,00	0,00	0,00	3
17	1204430,0	442671,78	2,00	0,43	59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00	0,37	73	14,00	0,00	0,00	0
19	1204301,2	442542,22	2,00	0,19	52	14,00	0,00	0,00	4

Вещество: 6053 Фтористый водород и плохорастворимые соли фтора

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
10	1204990,9	442895,43	2,00	0,04	262	9,23	0,00	0,00	3
9	1264906,9	443006,03	2,00	0,04	235	9,23	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,04	290	9,23	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,04	207	9,23	0,00	0,00	3
12	1284940,5	442668,65	2,00	0,04	315	9,23	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,03	182	9,23	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,03	158	14,00	0,00	0,00	3
13	1204003,2	442584,68	2,00	0,03	339	14,00	0,00	0,00	3
5	1204054,7	443085,91	2,00		135	14,00	0,00	0,00	3
14	1204700,3	442537,37	2,00	0,03	0	14,00	0,00	0,00	3
4	1204404,6	443003,51	2,00		115	14,00	0,00	0,00	3
15	1204039,2	442534,45	2,00	0,03	19	14,00	0,00	0,00	3
3	7204400,1	442888,02	2,00	0,03	94	14,00	0,00	0,00	3
2	1204404,0	442769,30	2,00	0,03	75	14,00	0,00	0,00	3
16	1204030,7	442577,42	2,00	0,03	38	14,00	0,00	0,00	3
1	1204441,7	442660,35	2,00	0,03	57	14,00	0,00	0,00	
17	1204400,0	442671,78	2,00	0,03	59	14,00	0,00	0,00	0
18	1204302,1	442749,36	2,00	0,02	74	14,00	0,00	0,00	.0
19	1204301,2	442542,22	2,00	0,02	52	14,00	0,00	0,00	4

Вещество: 6204 Азота диоксид, серы диоксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,56	55	2,62	0,10	0,28	3
19	1204301,2	442542,22	2,00	0,52	45	3,98	0,23	0,35	4
17	1204433,3	442671,78	2,00	0,52	60	2,62	0,13	0,28	0
16	1284030,7	442577,42	2,00	0,52	15	3,98	0,23	0,35	3
15	1284639,2	442534,45	2,00	0,49	343	6,05	0,25	0,35	3
14	1204/00,3	442537,37	2,00	0,47	319	6,05	0,27	0,35	3
2	1204404,9	442769,30	2,00	0,44	98	6,05	0,18	0,28	3
18	1204302,1	442749,36	2,00	0,43	90	6,05	0,18	0,28	0
9	1204900,9	443006,03	2,00	0,43	240	1,13	0,14	0,25	3
3	1204400,1	442888,02	2,00	0,42	130	6,05	0,19	0,28	3
8	12040/4,1	443094,62	2,00	0,42	217	1,13	0,14	0,25	3
13	1204000,2	442584,68	2,00	0,40	315	2,62	0,31	0,35	3
10	1204990,9	442895,43	2,00	0,40	260	1,13	0,16	0,25	
12	1204940,0	442668,65	2,00	0,39	315	2,62	0,32	0,35	3
7	1204/03,2	443139,53	2,00	0,39	198	1,13	0,16	0,25	3
4	1204404,0	443003,51	2,00	0,37	132	0,57	0,17	0,25	3
6	1204040,4	443136,00	2,00	0,37	174	0,57	0,17	0,25	3
11	1204993,1	442775,25	2,00	0,37	283	0,57	0,17	0,25	3
5	1204054,7	443085,91	2,00	0,37	153	0,57	0,17	0,25	3

Вещество: 6205 Серы диоксид и фтористый водород

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр, ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
1	1204447,7	442660,35	2,00	0,05	55	3,91	0,00	0,00	3
17	1204430,5	442671,78	2,00	0,05	60	5,98	0,00	0,00	0
9	1204900,9	443006,03	2,00	0,04	239	1,09	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,04	214	1,09	0,00	0,00	3
10	1284998,9	442895,43	2,00	0,04	262	1,09	0,00	0,00	3
2	1204404,3	442769,30	2,00	0,04	77	0,71	0,00	0,00	3
19	1204301,2	442542,22	2,00		48	5,98	0,00	0,00	4
7	1204/03,2	443139,53	2,00		189	0,71	0,00	0,00	3
11	1284993,7	442775,25	2,00		287	0,71	0,00	0,00	3
16	1204550,/	442577,42	2,00		27	0,71	0,00	0,00	3
3	1204400,1	442888,02	2,00		1.00	0,71	0,00	0,00	3
18	1204302,1	442749,36	2,00		76	0,71	0,00	0,00	0
6	1204040,4	443136,00	2,00		166	0,71	0,00	0,00	3
12	1204940,3	442668,65	2,00		310	0,71	0,00	0,00	3
4	1284404,8	443003,51	2,00		122	0,71	0,00	0,00	3
5	1284034,1	443085,91	2,00		143	0,71	0,00	0,00	3
15	1204039,2	442534,45	2,00		7	0,71	0,00	0,00	3
13	1204003,2	442584,68	2,00		331	0,71	0,00	0,00	3
14	1204/00,3	442537,37	2,00		350	0,71	0,00	0,00	3

Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам

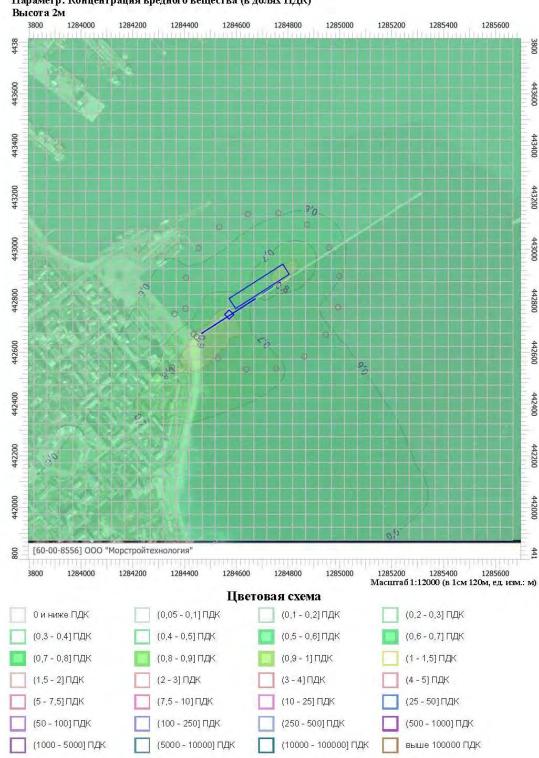
Код расчета: 0123 (диЖелезо триоксид (Железа оксид) (в пересчете на железо))

Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 0143 (Марганец и его соединения (в пересчете на марганца (IV) оксид))



Отчет

Вариант расчета: Западный мод (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 0301 (Азота диоксид (Азот (IV) оксид))

Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0304 (Азот (II) оксид (Азота оксид)) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 3800 443600 443400 443400 443200 443000 443000 442800 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 441 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2-0,3] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,3 - 0,4] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК

(3 - 4] ПДК

(10 - 25] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(4 - 5] ПДК

(25 - 50] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(1,5 - 2] ПДК

(5 - 7,5] ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(2-3] ПДК

(7,5 - 10] ПДК

(100 - 250] ПДК

(5000 - 10000) ПДК

Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0328 (Углерод (Сажа)) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 3800 443600 443400 443400 443200 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК (50 - 100] ПДК (100 - 250] ПДК (250 - 500] ПДК (500 - 1000] ПДК (1000 - 5000] ПДК (5000 - 10000] ПДК (10000 - 100000] ПДК выше 100000 ПДК

Отчет Вариант расчета: Западный мод (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0330 (Сера диоксид (Ангидрид сернистый)) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 443600 443400 443400 443200 443000 442800 442600 442400 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК

(10 - 25] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(25 - 50] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(5 - 7,5] ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(7,5 - 10] ПДК

(100 - 250] ПДК

(5000 - 10000] ПДК

Отчет Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0337 (Углерод оксид) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 3800 443600 443600 443400 443400 443200 443000 443000 442800 442600 442400 442200 442200 442000 [60-00-8556] ООО "Морстройтехнология" 441 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2-0,3] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,3 - 0,4] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2 - 3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(100 - 250] ПДК

(5000 - 10000) ПДК

Отчет Вариант расчета: Западный мод (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0344 (Фториды плохо растворимые) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 443600 443400 443400 443200 443000 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК

(250 - 500] ПДК

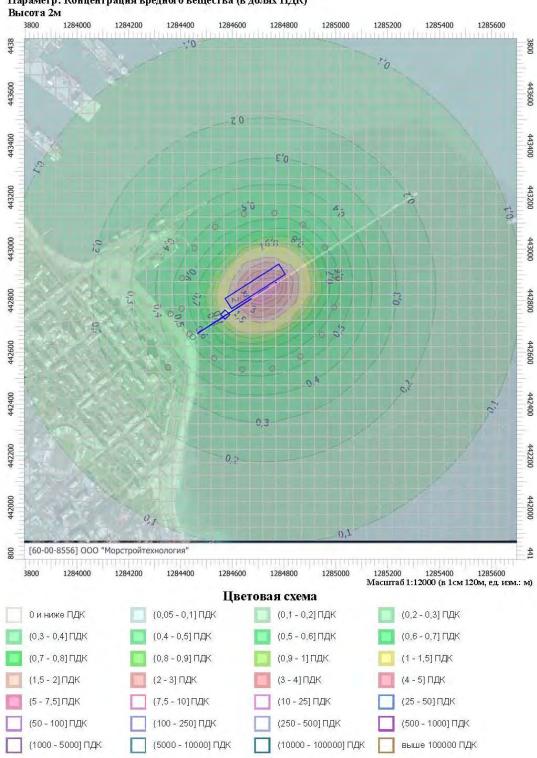
(10000 - 100000] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК


(100 - 250] ПДК

(5000 - 10000) ПДК

Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам Код расчета: 0621 (Метилбензол (Толуол))

Отчет Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0703 (Бенз/а/пирен (3,4-Бензпирен)) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 443600 443400 443400 443200 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(500 - 1000] ПДК

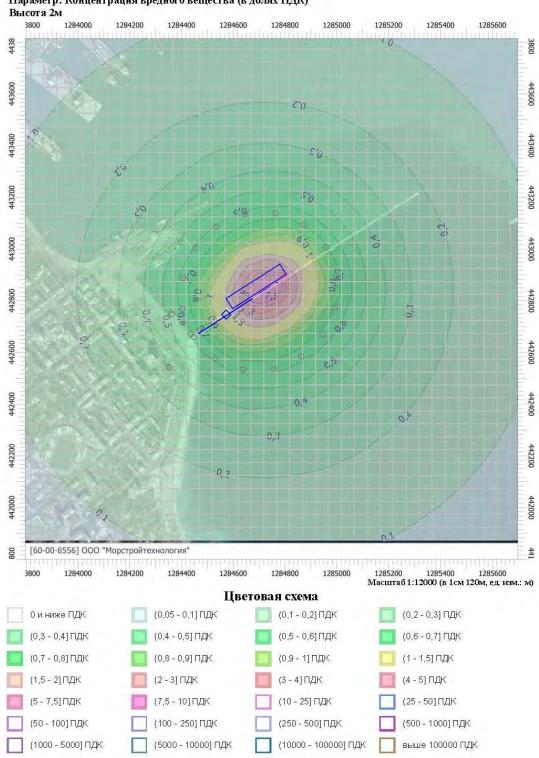
выше 100000 ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(100 - 250] ПДК

(5000 - 10000) ПДК


Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018

14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 1210 (Бутилацетат)

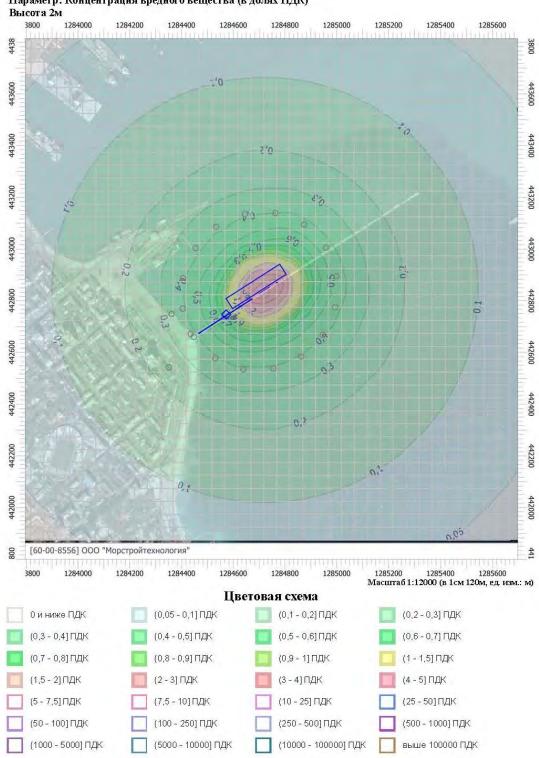
Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 1325 (Формальдегид) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 443600 443400 443400 443200 443000 442800 442600 442400 442200 [60-00-8556] ООО "Морстройтехнология" 1284200 1284800 1285000 1284600 3800 1284000 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8]ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК (50 - 100] ПДК (100 - 250] ПДК (250 - 500] ПДК (500 - 1000] ПДК

(1000 - 5000] ПДК

(5000 - 10000] ПДК

(10000 - 100000] ПДК

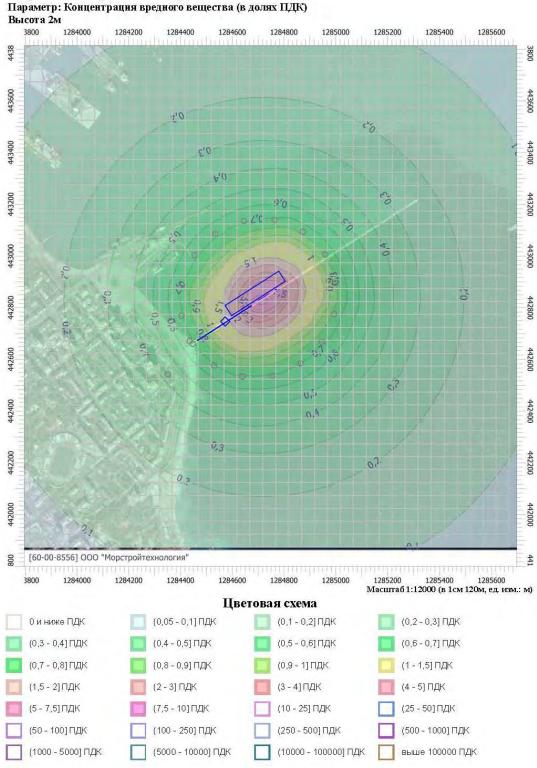

выше 100000 ПДК

Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам Код расчета: 1401 (Пропан-2-он (Ацетон))

Параметр: Концентрация вредного вещества (в долях ПДК)



Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018

14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам Код расчета: 1411 (Циклогексанон)

Отчет Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 2732 (Керосин) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 443600 443400 443400 443200 443000 442800 442600 442400 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК

(250 - 500] ПДК

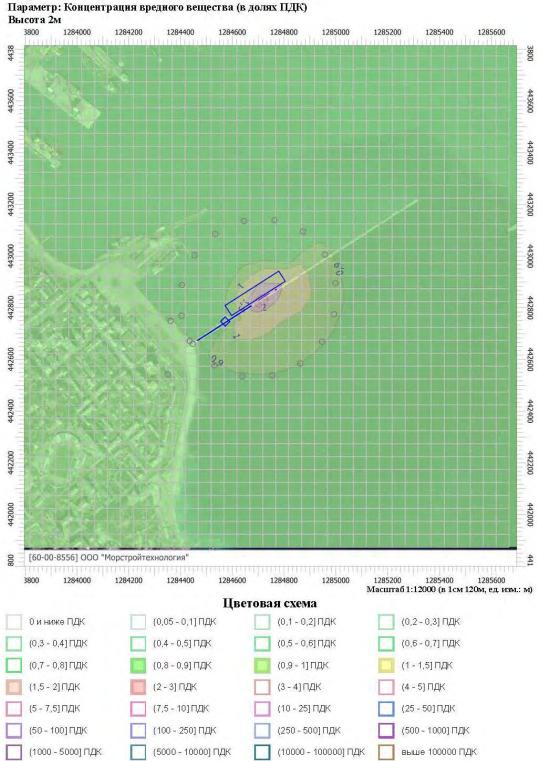
(10000 - 100000] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

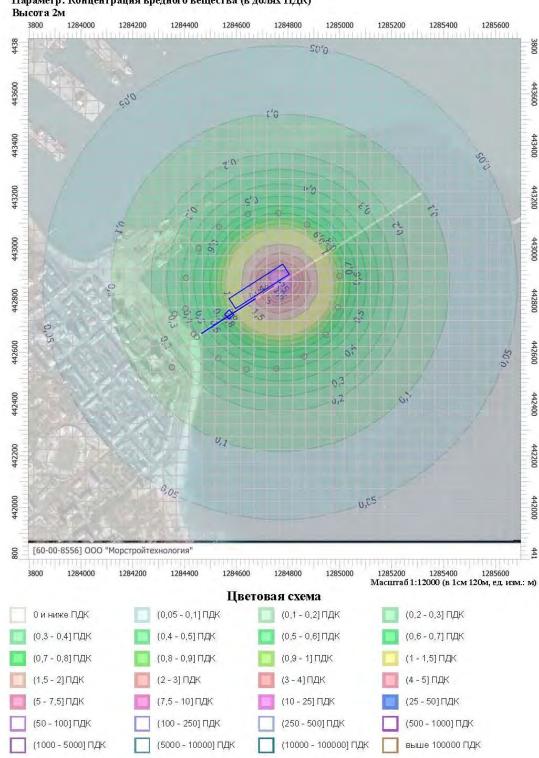

(100 - 250] ПДК

(5000 - 10000] ПДК

Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам Код расчета: 2902 (Взвешенные вещества)

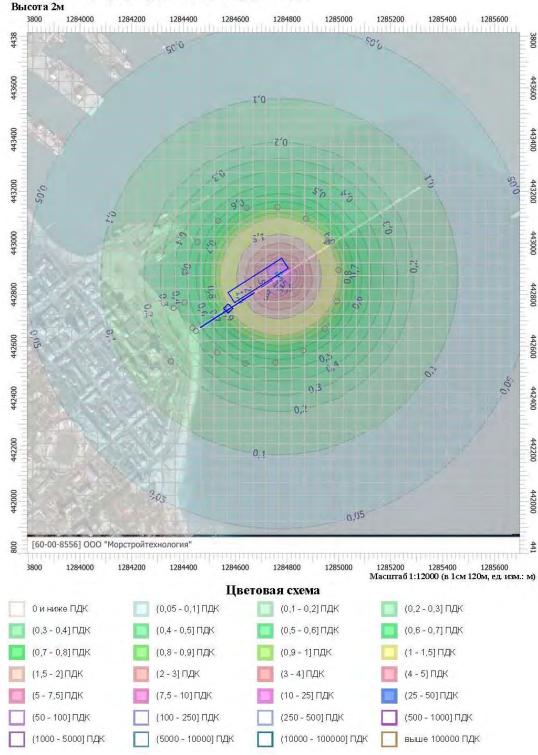

Отчет

Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 2907 (Пыль неорганическая >70% SiO2)

Параметр: Концентрация вредного вещества (в долях ПДК)



Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по MPP-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 2908 (Пыль неорганическая: 70-20% SiO2) Параметр: Концентрация вредного вещества (в долях ПДК)

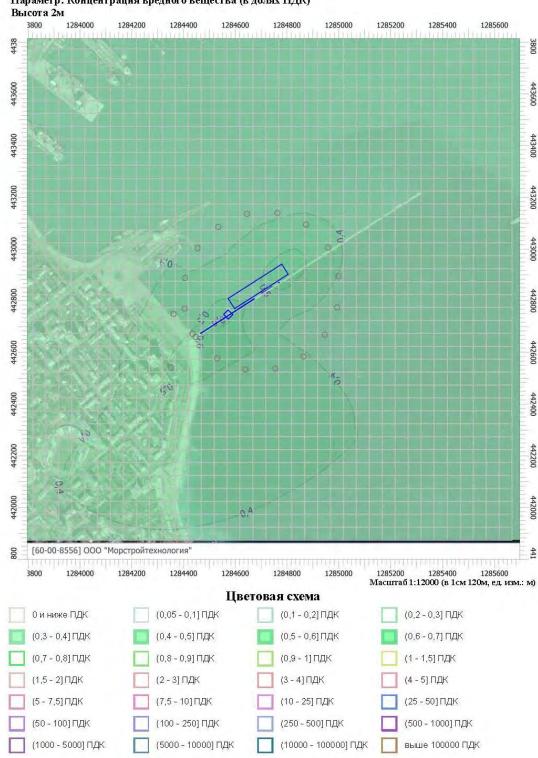
Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по MPP-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 6053 (Фтористый водород и плохорастворимые соли фтора)

Параметр: Концентрация вредного вещества (в долях ПДК)


Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00], ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 6204 (Азота диоксид, серы диоксид)

Параметр: Концентрация вредного вещества (в долях ПДК)

Отчет

Вариант расчета: Западный мод (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 6205 (Серы диоксид и фтористый водород) Параметр: Концентрация вредного вещества (в долях ПДК)

Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по MPP-2017 [20.05.2018 14:57 - 20.05.2018 15:00] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: Все вещества (Объединённый результат) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 3800 443600 443400 443400 443200 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 441 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2-0,3] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,3 - 0,4] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК (50 - 100] ПДК (100 - 250] ПДК (250 - 500] ПДК (500 - 1000] ПДК (1000 - 5000] ПДК (5000 - 10000) ПДК (10000 - 100000] ПДК выше 100000 ПДК

Приложение Ц. Расчет выбросов загрязняющих веществ на период эксплуатации проектируемого объекта

Буксир «Адмирал Лазарев». ИЗА № 0001

В процессе эксплуатации судов, при работе дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения об эксплуатационной мощности двигателя, а для расчета валовых выбросов в атмосферу, - с учетом сведений о годовом расходе топлива дизельного двигателя. Расчет максимально разовых выбросов произведен с учетом работы дизельных двигателей в режиме швартовки (40% от номинальной мощности).

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений загрязняющих веществ в атмосферу от стационарных дизельных установок. СПб, 2001».

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.

Таблица 1 – Характеристика выделений загрязняющих веществ в атмосферу

	<u> </u>	·	. 2
	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,76224	3,1248
304	Азот (II) оксид (Азота оксид)	0,123864	0,50778
328	Углерод (Сажа)	0,037715	0,154938
330	Сера диоксид (Ангидрид сернистый)	0,2646667	1,085
337	Углерод оксид	0,794	3,255
703	Бенз/а/пирен (3,4-Бензпирен)	0,0000008	0,0000035
1325	Формальдегид	0,0094839	0,037107
2732	Керосин	0,2269517	0,930062

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 2.

Таблица 2 – Исходные данные для расчета

Данные	Мощно сть, кВт	топлив	Удельн ый расход, г/кВт·ч	Одно врем енно сть
Буксир «Адмирал Лазарев». Группа Г. Изготовитель ЕС, США, Япония. Мощные, повышенной быстроходности многоцилиндровые (Ne = 736-7360 кВт; n = 1500-3000 об/мин). До ремонта.	794	217	250	+

Максимальный выброс i-го вещества стационарной дизельной установкой определяется по формуле:

$$M_i = (1 / 3600) \cdot e_{Mi} \cdot P_{\mathcal{I}}, z/c$$

где e_{Mi} - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $z/\kappa Bm \cdot u$;

 $P_{\it 9}$ - эксплуатационная мощность стационарной дизельной установки, κBm ;

(1/3600) – коэффициент пересчета из часов в секунды.

Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле:

$$W_{\ni i} = (1 / 1000) \cdot q_{\ni i} \cdot G_T$$
, $m/20\partial$

где $q_{\ni i}$ - выброс i-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, $z/\kappa z$;

 G_T - расход топлива стационарной дизельной установкой за год, m;

(1 / 1000) – коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле:

$$G_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot b_{\text{3}} \cdot P_{\text{3}}, \kappa c/c$$

где b_3 - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $z/\kappa Bm \cdot u$.

Объемный расход отработавших газов определяется по формуле:

$$Q_{O\Gamma} = G_{O\Gamma} / \gamma_{O\Gamma}, M^3/c$$

где уог - удельный вес отработавших газов, рассчитываемый по формуле:

$$\gamma_{O\Gamma} = \gamma_{O\Gamma(npu\ t=0^{\circ}C)} / (1 + T_{O\Gamma} / 273), \kappa_{Z}/M^{3}$$

где $\gamma_{O\Gamma(npu\ t=0^{\circ}C)}$ - удельный вес отработавших газов при температуре 0° С, $\gamma_{O\Gamma(npu\ t=0^{\circ}C)} = 1,31$ кг/м³;

 $T_{O\Gamma}$ - температура отработавших газов, K.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м, значение их температуры можно принимать равным $450\,^{\circ}$ C, на удалении от 5 до $10\,^{\circ}$ M - $400\,^{\circ}$ C.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Расчет объемного расхода отработавших газов приведен ниже.

$$G_{OF} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 794 = 1.73092 \, \kappa c/c.$$

- на удалении (высоте) до 5 м, T_{OF} = 723 K (450 °C):

$$\gamma_{O\Gamma} = 1.31 / (1 + 723 / 273) = 0.359066 \, \kappa c/m^3;$$

 $Q_{O\Gamma} = 1,73092 / 0,359066 = 4,8206 \,\text{m}^3/c;$

Буксир «Адмирал Серебряков». ИЗА № 0002

В процессе эксплуатации судов, при работе дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения об эксплуатационной мощности двигателя, а для расчета валовых выбросов в атмосферу, - с учетом сведений о годовом расходе топлива дизельного двигателя. Расчет максимально разовых выбросов произведен с учетом работы дизельных двигателей в режиме швартовки (40% от номинальной мощности).

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений загрязняющих веществ в атмосферу от стационарных дизельных установок. СПб, 2001».

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.

Таблица 1 – Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,76224	1,9728
304	Азот (II) оксид (Азота оксид)	0,123864	0,32058
328	Углерод (Сажа)	0,037715	0,097818
330	Сера диоксид (Ангидрид сернистый)	0,2646667	0,685
337	Углерод оксид	0,794	2,055
703	Бенз/а/пирен (3,4-Бензпирен)	0,0000008	0,0000022
1325	Формальдегид	0,0094839	0,023427
2732	Керосин	0,2269517	0,587182

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 2.

Таблица 2 – Исходные данные для расчета

1 11 11 1				
Данные	сть,	Расход топлив а, т/год	nacyon	Одно врем енно сть
Буксир «Адмирал Серебряков». Группа Г. Изготовитель ЕС, США, Япония. Мощные, повышенной быстроходности многоцилиндровые (Ne = 736-7360 кВт; n = 1500-3000 об/мин).	794	217	250	+
До ремонта.				

Максимальный выброс i-го вещества стационарной дизельной установкой определяется по формуле:

$$M_i = (1 / 3600) \cdot e_{Mi} \cdot P_{\mathcal{I}}, z/c$$

где e_{Mi} - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $\varepsilon/\kappa Bm \cdot u$;

 $P_{\mathfrak{I}}$ - эксплуатационная мощность стационарной дизельной установки, κBm ;

(1/3600) – коэффициент пересчета из часов в секунды.

Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле:

$$W_{\ni i} = (1 / 1000) \cdot q_{\ni i} \cdot G_T, m/20\partial$$

где $q_{\ni i}$ - выброс i-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, $z/\kappa z$;

 Gr - расход топлива стационарной дизельной установкой за год, m ;

(1 / 1000) – коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле:

$$G_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot b_{9} \cdot P_{9}, \kappa c/c$$

где b_3 - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $z/\kappa Bm \cdot u$.

Объемный расход отработавших газов определяется по формуле:

$$Q_{O\Gamma} = G_{O\Gamma} / \gamma_{O\Gamma}, M^3/c$$

где уог - удельный вес отработавших газов, рассчитываемый по формуле:

$$\gamma_{O\Gamma} = \gamma_{O\Gamma(npu\ t=0^{\circ}C)} / (1 + T_{O\Gamma} / 273), \kappa_{Z}/M^{3}$$

где $\gamma_{O\Gamma(npu\;t=0\,^{\circ}C)}$ - удельный вес отработавших газов при температуре $0\,^{\circ}$ С, $\gamma_{O\Gamma(npu\;t=0\,^{\circ}C)}=1,31$ кг/м³;

 $T_{O\Gamma}$ - температура отработавших газов, K.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м, значение их температуры можно принимать равным $450\,^{\circ}$ C, на удалении от 5 до $10\,^{\circ}$ M - $400\,^{\circ}$ C.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Расчет объемного расхода отработавших газов приведен ниже.

$$G_{OF} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 794 = 1.73092 \, \kappa c/c$$
.

- на удалении (высоте) до 5 м, $T_{O\Gamma}$ = 723 K (450 °C):

$$\gamma_{O\Gamma} = 1.31 / (1 + 723 / 273) = 0.359066 \, \kappa c/m^3;$$

 $Q_{O\Gamma} = 1,73092 / 0,359066 = 4,8206 \,\text{m}^3/c;$

Буксир «Кайман». ИЗА № 0003

В процессе эксплуатации судов, при работе дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения об эксплуатационной мощности двигателя, а для расчета валовых выбросов в атмосферу, - с учетом сведений о годовом расходе топлива дизельного двигателя. Расчет максимально разовых выбросов произведен с учетом работы дизельных двигателей в режиме швартовки (40% от номинальной мощности).

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений загрязняющих веществ в атмосферу от стационарных дизельных установок. СПб, 2001».

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.

Таблица 1 – Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Максимально	Годовой выброс,
код	наименование	разовый выброс, г/с	т/год
301	Азота диоксид (Азот (IV) оксид)	0,96	3,9456
304	Азот (II) оксид (Азота оксид)	0,156	0,64116
328	Углерод (Сажа)	0,0475	0,195636
330	Сера диоксид (Ангидрид сернистый)	0,3333333	1,37
337	Углерод оксид	1	4,11
703	Бенз/а/пирен (3,4-Бензпирен)	0,000001	0,0000044
1325	Формальдегид	0,0119444	0,046854
2732	Керосин	0,2858333	1,174364

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 2.

Таблица 2 – Исходные данные для расчета

Данные	Мощно сть,	гтонгив	ыи	_
	кВт	а, т/год	г/кВт·ч	сть
Буксир "Кайман". Группа Г. Изготовитель ЕС, США, Япония.	1000	274	250	+
Мощные, повышенной быстроходности многоцилиндровые (Ne				
= 736-7360 кВт; n = 1500-3000 об/мин). До ремонта.				

Максимальный выброс i-го вещества стационарной дизельной установкой определяется по формуле:

$$M_i = (1 / 3600) \cdot e_{Mi} \cdot P_{\exists}, z/c$$

где e_{Mi} - выброс i-го вредного вещества на единицу полезной работы стационарной дизельной установки на режиме номинальной мощности, $z/\kappa Bm \cdot u$;

 $P_{\mathfrak{I}}$ - эксплуатационная мощность стационарной дизельной установки, κBm ;

(1/3600) – коэффициент пересчета из часов в секунды.

Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле:

$$W_{\ni i} = (1 / 1000) \cdot q_{\ni i} \cdot G_T, m/20\partial$$

где $q_{\ni i}$ - выброс i-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, $z/\kappa z$;

 G_T - расход топлива стационарной дизельной установкой за год, m;

(1 / 1000) – коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле:

$$G_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot b_{\text{3}} \cdot P_{\text{3}}, \kappa c/c$$

где b_{3} - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $z/\kappa Bm \cdot u$.

Объемный расход отработавших газов определяется по формуле:

$$Q_{O\Gamma} = G_{O\Gamma} / \gamma_{O\Gamma}, m^3/c$$

где $\gamma_{O\Gamma}$ - удельный вес отработавших газов, рассчитываемый по формуле:

$$\gamma_{O\Gamma} = \gamma_{O\Gamma(npu\ t=0^{\circ}C)} / (1 + T_{O\Gamma} / 273), \kappa_{Z}/M^{3}$$

где $\gamma_{O\Gamma(npu\;t=0\,^{\circ}C)}$ - удельный вес отработавших газов при температуре $0\,^{\circ}$ С, $\gamma_{O\Gamma(npu\;t=0\,^{\circ}C)}=1,31$ кг/м³;

 $T_{O\Gamma}$ - температура отработавших газов, K.

При организованном выбросе отработавших газов в атмосферу, на удалении от стационарной дизельной установки (высоте) до 5 м, значение их температуры можно принимать равным 450 °C, на удалении от 5 до 10 м - 400 °C.

Расчет годового и максимально разового выделения загрязняющих веществ в атмосферу приведен ниже.

Расчет объемного расхода отработавших газов приведен ниже.

$$G_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot 250 \cdot 1000 = 2.18 \, \kappa c/c.$$

- на удалении (высоте) до 5 м, **Т**ог = 723 K (450 °C):

$$\gamma_{O\Gamma} = 1.31 / (1 + 723 / 273) = 0.359066 \, \kappa z / M^3;$$

 $Q_{O\Gamma} = 2.18 / 0.359066 = 6.0713 \text{ m}^3/c$;

Двигатели судов (валовые выбросы)

В процессе эксплуатации судов, при работе дизельных установок в атмосферу с отработавшими газами выделяются вредные (загрязняющие) вещества.

В качестве исходных данных для расчета максимальных разовых выбросов используются сведения об эксплуатационной мощности двигателя, а для расчета валовых выбросов в атмосферу, - с учетом сведений о годовом расходе топлива дизельного двигателя. Расчет максимально разовых выбросов произведен с учетом работы дизельных двигателей в режиме швартовки (40% от номинальной мощности).

Расчет выделений загрязняющих веществ выполнен в соответствии с «Методикой расчета выделений загрязняющих веществ в атмосферу от стационарных дизельных установок. СПб, 2001».

Количественная и качественная характеристика загрязняющих веществ, выделяющихся в атмосферу, приведена в таблице 1.

Таблица 1 - Характеристика выделений загрязняющих веществ в атмосферу

	Загрязняющее вещество	Caranay pugnaa m/ran
код	наименование	Годовой выброс, т/год
301	Азота диоксид (Азот (IV) оксид)	39,2104
304	Азот (II) оксид (Азота оксид)	6,37169
328	Углерод (Сажа)	2,125344
330	Сера диоксид (Ангидрид сернистый)	9,853
337	Углерод оксид	34,918
703	Бенз/а/пирен (3,4-Бензпирен)	0,0000566
1325	Формальдегид	0,536566
2732	Керосин	13,277156

Исходные данные для расчета выделений загрязняющих веществ приведены в таблице 2. Таблица 2 - Исходные данные для расчета

Данные	Мощно сть, кВт	Расход топлив а, т/год	Удельн ый расход, г/кВт·ч	Одно врем енно сть
Буксир "Ирбис". Группа Г. Изготовитель ЕС, США, Япония. Мощные, повышенной быстроходности многоцилиндровые (Ne	736	201	250	+
= 736-7360 кВт; n = 1500-3000 об/мин). До ремонта.				·
Буксир «Адмирал Лазарев». Группа Г. Изготовитель ЕС, США, Япония. Мощные, повышенной быстроходности	794	217	250	
многоцилиндровые (Ne = 736-7360 к B т; n = 1500-3000 об/мин). До ремонта.				+
Буксир «Адмирал Серебряков». Группа Г. Изготовитель ЕС,	794	217	250	
США, Япония. Мощные, повышенной быстроходности многоцилиндровые (Ne = 736-7360 кВт; n = 1500-3000 об/мин). До ремонта.				+
Буксир «Генерал Раевский». Группа Г. Изготовитель ЕС, США,	500	137	250	
Япония. Мощные, повышенной быстроходности многоцилиндровые (Ne = 736-7360 кВт; n = 1500-3000 об/мин). До ремонта.				+
Лоцманский катер "Капитан Фофонов". Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	80	22	250	+

Данные	Мощно сть, кВт	топлив а, т/год	Удельн ый расход, г/кВт·ч	Одно врем енно сть
Многоцелевой катер "Бора". Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	194	53	250	+
Катер "Кондор". Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	104	28	250	+
Судно "Сарган". Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	104	28	250	+
Катер "Боспор". Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	272	74	250	+
Катер Адис. Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	272	74	250	+
СЛВ "Кальмар". Группа Б. Средней мощности, средней быстроходности и быстроходные (Ne = 73,6-736 кВт; n = 500-1500 об/мин). До ремонта.	66	18	250	+
ПК "Севастополец". Группа В. Мощные, средней быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.	428	117	250	+
Буксир-кантовщик «Тайфун». Группа В. Мощные, средней быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.	740	203	250	+
Буксир-кантовщик «Бесстрашный». Группа В. Мощные, средней быстроходности (Ne = 736-7360 кВт; n = 500-1000 об/мин). До ремонта.	740	203	250	+
Буксир "Кайман". Группа Г. Изготовитель ЕС, США, Япония. Мощные, повышенной быстроходности многоцилиндровые (Ne = 736-7360 кВт; $n = 1500-3000$ об/мин). До ремонта.	1000	274	250	+

Валовый выброс i-го вещества за год стационарной дизельной установкой определяется по формуле:

$$W_{\ni i} = (1 / 1000) \cdot q_{\ni i} \cdot G_T, m/20\partial$$

где $q_{\ni i}$ - выброс i-го вредного вещества, приходящегося на 1 кг топлива, при работе стационарной дизельной установки с учетом совокупности режимов, составляющих эксплуатационный цикл, $z/\kappa z$;

 G_T - расход топлива стационарной дизельной установкой за год, m;

(1 / 1000) – коэффициент пересчета килограмм в тонны.

Расход отработавших газов от стационарной дизельной установки определяется по формуле:

$$G_{O\Gamma} = 8.72 \cdot 10^{-6} \cdot b_{9} \cdot P_{9}, \kappa z/c$$

где b_{3} - удельный расход топлива на эксплуатационном (или номинальном) режиме работы двигателя, $z/\kappa Bm \cdot u$.

Приложение Ш. Расчет рассеивания загрязняющих веществ на период эксплуатации проектируемого объекта

УПРЗА «ЭКОЛОГ», версия 4.50 Copyright © 1990-2018 ФИРМА «ИНТЕГРАЛ»

"Программа зарегистрирована на: ООО "Морстройтехнология Регистрационный номер: 60-00-8556

Предприятие: 1, Западный мол

Город: 2, Новороссийск Район: 1, Новый район Адрес предприятия: Разработчик:

ИНН: ОКПО: Отрасль:

Величина нормативной санзоны: 0 м

ВИД: 1, Эксплуатация

ВР: 1, Новый вариант расчета Расчетные константы: S=999999,99

Расчет: «Расчет рассеивания с учетом застройки по MPP-2017» (лето)

Метеорологические параметры

-3,1
26
200
14
Q
0

Структура предприятия (площадки, цеха)

1 - Акватория порта	
1 - Акватория порта	

Параметры источников выбросов

Типы источников:

"%" - источник учитывается с исключением из фона:
"+" - источник учитывается без исключения из фона;
"-" - источник не учитывается и его вклад исключеется из фона.
При отсутствии отметок источник не учитывается.

3 - Неорганизованный: 2 - Линейный.

4 - Совомупность точечных источников;

5 - С зависимостью массы выброса от скорости ветра. 6 - Точечный, с зонтом или выбросом горизонтально: 7 - Совокупность точечных (зонт или выброс вбой): 8 - Автомагистраль (неорганизованный линейный); 9 - Точечный, с выбросом вбок; 10 - Свеча.

Hanveriorasinic account (Acordia Conditional) Hanveriorasinic account (Aco	Yver		-	-	Высота	та Диаметр	Объем	Скорость Плотность	Плотность	Темп.	Ширина	מיניס	Отклонение	Козф		Координаты	инаты	
Eykonp wAdampen Jiasapeas 1 1 10 0.20 4.82 155.44 1.29 450.00 0.00 1 1 1284647.1 128467.1 128467	_			o.				(M/c)	rBC, (icr/icy6.m)	7BC (°C)	MCTO4,	Yron	Направл,	-		Y1 (M)	X (w)	Y2 (M)
Буксир уАдмирел Лазарев» 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ne nu.: 1</td> <td>, Ne цеха:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								Ne nu.: 1	, Ne цеха:									
HammehoBahire Belliectes Buldooc (rfc)	1 %	Буксир «Адмирал Лазарев»	3	~	10		4,82	153,44	1,29	450,00	00'0	-	0.	1,1		442805.10		
Hawkerobashire Beaulethas Belidopot. (Tr) Belidopot. (Tr) Belidopot. (Tr) Condition Table Ta	10000						100		3			Лето				34)	wa	
332 Agort Hunchay (Abort (Ul) circula) Agort Hunchay (Abort Amultania) 0.7562400 3.124800 1 0.20 319.58 8.78 0.22 319.58 31	Код в-ва	Наименован	HNe Be	щества	(7)		Subpoc, (r/t		T(r) F	Cm/II	×	Xm	Ď	5	Cm/ngl		m)	E C
9324 Asort III) olicida (Asorta exicida) 0.1238640 0.567780 1 0.02 319.58 8.78 0.02 319.58 9326 Углерод (Сажа) 0.0377150 0.1538600 1 0.03 319.58 8.78 0.01 319.58 9330 Сера диоксид (Актидомд серинистый) 0.2646667 1,036000 1 0.03 319.58 8.78 0.01 319.58 3337 Углерод оксид (Актидомд (Актидомд Серинистый) 0.7940000 3.255000 1 0.01 319.58 8.78 0.01 319.58 3735 Бензай-инирен (З.4-Бензинирен) 0.0094339 0.000003 1 0.01 319.58 8.78 0.01 319.58 2732 Керосин 1	0301	Азота диоксид	(Азот	(IV) OK	(ANC)		0,7622400		1 0	0,20		319,58	8,	8.	0.22	31	9,58	8.78
9326 Утперод (Сама) 0.0377150 0.154938 1 0.01 319.58 8.78 0.01 319.58 3330 Сера диоксид (Ангидрид серния (Ангидрид с	0304	Asor (II) okcn	A (A301	Ta OKCH,	A)		0,1238640		1 0	0,02		319,58	8	82	0,02	31	9,58	8.78
333 (2) (2) (2) (2) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0328	Vrnepo	A (Cax	(8)			0.0377150	Ĭ	8 1	0.01		319.58	8.7.	82	10.0	31	9,58	8.78
3337 Утлерод оксида 77940000 3.255000 1 0,01 319.58 8.78 0,01 319.58 7732 Бенз/а/пирен (3.4-Бензлирен) 0,00000008 0,0000003 1 0,00 319.58 8.78 0,01 319.58 7325 Формальдегид 0,0094839 0,037107 1 0,01 319.58 8.78 0,01 319.58 732 Керодин 1 1 1 1 1 0,037107 1 0,01 319.58 0,01 319.58 732 Буксир «Даминрал Серебрянсов» 1 1 0,01 1	0330	Сера диоксид (Ан	имдрил	д серни	(CTSIN)		0,2646667	1,08500	1 0	0,03		319,58	8	82	0.03	31	9,58	8.78
7733 EeHa/la/Inipert (3-L-EeHanilpert) 0,00000008 0,0000003 1 0,000 319.58 8.78 0.00 319.58 1325 Φορμαλια (Aprillation) Kepocht 0,0004839 0,037.107 1 0,001 319.58 8.78 0,001 319.58 2732 Kepocht «Adminipan Cepebpakoa» 1 1 1 1 1 1 1 1 1 1 1 319.58 319.58 8.78 0,01 319.58 319.58 319.58 319.58 319.58 319.58 319.58 319.58 319.58 0,01 319.58 <	0337	Vrnepc	DA OKCH	14			0.7940000		1 0	0.01		319,58	8	82	10'0	31	9,58	8.78
325 Shick Shick	0703	Бенз/а/пирен	(3.4-Ee	напире	SH)		0.0000000		3 1	00'0		319.58	89	78	00'0	31	9,58	8.78
2732 Kepochi Mamipan Cepebpancia, Inchiration occini, Asorta Ministra Marchia Ministra Marchia Ministra Marchia Ministra Marchia March	1325	Форма	льдеги	A			0.0094839		1 2	0,01		319.58	.8	78	0.01	31	9,58	8.78
2 Sykichip «Adminipani Cepe5baskoa» 1 1 1 1 1 1 1 1 1	2732	Kep	НИООС				0.2269517		2 1	0,01	1	319,58	8.7	82	0.01	31	9.58	8.78
Наименование вещества Выброс, (т/с) Выброс, (т/с) Выброс, (т/г) F СпиЛДК Xm Um СпиЛДК Xm Авот (II) околд (Asora околд) 0.7622400 1.972800 1 0.20 319.58 8.76 0.22 319.58 Авот (II) околд (Asora околд) 0.1238640 0.320580 1 0.02 319.58 8.78 0.02 319.58 Углерод (Сама) 0.0377150 0.097818 1 0.01 319.58 8.78 0.01 319.58 Сера диоксид (Ангидрид серинстый) 0.2646667 0.685000 1 0.03 319.58 8.78 0.03 319.58	-	Буксир «Адмирал Серебряков	3.0 1	-	40		4,82	153,44	1,29	450.00	00'0	н	a .	4.4		442838,70		
Asort (II) оконд (Азот (VV) оксид) 0.7622400 1.972800 1 0.20 319.58 8.78 0.22 319.58 Asort (II) оконд (Азота оксид) 0.1238640 0.320580 1 0.02 319.58 8.78 0.02 319.58 Углерод (Сама) 0.0377150 0.097818 1 0.01 319.58 8.78 0.01 319.58 Сера диоксид (Ангидрид серинстый) 0.2646667 0.685000 1 0.03 319.58 8.78 0.03 319.58	Very Park	Section Control of	-	-			Statement Park	O. Branch	1			Лето				301	Ma	
Азота диоксид (Азот (IV) оксид) 0,7622400 1,972800 1 0,20 319,58 8,78 0,22 319,58 Азот (III) оксид (Азота оксид) 0,0377150 0,097818 1 0,01 319,58 8,78 0,01 319,58 Сера диоксид (Ангидрид серинстый) 0,2646667 0,685000 1 0,03 319,58 8,78 0,03 319,58	Nug Bred	I SAM WELLOW	HNG BG	Herring			opidone, (iv.	Condoine (L (W	Cm/IIA	¥	Ϋ́	5	F	Cm/III		(m	m ₅
Азот (II) окрид (Азота оксид) 0.1238640 0.320580 1 0.02 319.58 8.78 0.02 319.58 Углерод (Сажа) 0.0377150 0.097818 1 0.01 319.58 8.78 0.01 319.58 Сера диоксид (Ангидрид сернистый) 0.2646667 0.685000 1 0.03 319.58 8.78 0.03 319.58	0301	Азота диоксид	(Азот	(IV) once	(พีทธ)		0.7622400	Ĵ	1 0	0.20		319,58	8.	78	0,22	31	9.58	87.8
Углерод (Сажв) 0.0377150 0.097818 1 0.01 319.58 8.78 0.01 319.58 Сера диоксид (Ангидрид сернистый) 0.2646667 0.685000 1 0.03 319.58 8.78 0.03 319.58	0304	Asor (II) oven	д (Азот	Ta OKCH,	(4		0.1238640		+ 0	0.02		319.58	8.7	82	0.02	31	9.58	8.78
Сера диожац (Ангидрид сериистый) 0,2646667 0,685000 1 0,03 319,58 8.78 0,03 319,58	0328	Arnebo	A (Can	(8)			0.0377150			0.01		319.58	8.	84	0.01	31	9.58	8.78
	0330	Сера диоксид (Ан	идрин	1 cepHi	(CTEIN)		0.2646667	0,68500	+ 0	0.03		319.58	8.7	82	0.03	31	95.6	8.78

8.78	8.78	8.78	8.78			Um	11,05	11,05	11,05	11,05	11,05	11,05	11,05	11.05
319.58	319,58	319,58	319,58	442872,40	Swwa	Xm	358,65	358,65	358,65	358,65	358,65	358,65	358,65	358,65
0.01	00'0	0.01	0.01	1284752,4 4428		Cm/n/pk	0,22	0.02	0.01	0.03	0,01	00'0	10.0	10.01
8.78	8,78	8,78	8.78	- 0		Um	11,05	11,05	11,05	11,05	11.05	11.05	11.05	11.05
319.58	319,58	319,58	319,58	3	Лето	Υm	358,65	358,65	358,65	358,65	358,65	358,65	358,65	358,65
0,01	00'0	0,01	0.01	450,00 0,00		Cm/TIGIK	0.20	0,02	0,01	0,03	10.0	00'0	0.01	0.01
+	4	4	1	1.29	i	L	1.	1		+	+	+		
2,055000	0.000002	0.023427	0.587182	193,26		Belapoc, (Tif.)	3,945600	0,641160	0,195636	1,370000	4.110000	0.000004	0.046854	1,174364
0.7940000	0,0000000	0.0094839	0.2269517	20.9		Belopoc. (r/c) is	0.9600000	0.1560000	0.0475000	0,3333333	1,0000000	0,000000,0	0.0119444	0,2858333
-				0,20	1	D)	0							
				10			3			(Nic				
	зпирен	ţ		Ŧ	1	ectBa	Л) оксид	(бисид)		сернист		зпирен)		
п оксид	3.4-Бен	ьдегид	Керосин	7		we Berri	Asor (I)	(Азота	(Сажа	мдрид	д оксид	3 4-Бен	ьдегид	низо
Углерод оксид	Бенз/а/пирен (3.4-Бензпирен)	Формальдегид	Kepc	Буксир «Кайман»	CONTRACTOR OF THE PROPERTY OF	наименование вещества	ASOTB ANOKONA (ASOT (IV) OKCNA)	Азот (II) оксид (Азота сисид)	Углерод (Сажа)	Сера диоксид (Ангидрид сернистый	Углерод оксид	Бенз/а/пирен (3.4-Бензпирен)	Формальдегид	Керосин
0337	0703	1325	2732	67		Код в-ва	101	0304	0328	0330	0337	0703	1325	2732
03	07	13	27.	%	3	Код	0301	03	03	03	03	20	53	27

Выбросы источников по веществам

Типы источников:

- 1 Точечный;
- 2 Линейный:
- 3 Неорганизованный; 4 Совокупность точечных источников;
- 5 С зависимостью массы выброса от скорости ветра,
- 6 Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок); 8 Автомагистраль (неорганизованный линейный); 9 Точечный, с выбросом в бок;

- 10 Свеча.

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

NΩ	No	NΩ		Выброс	6211		Лето			Зима	
nn,	цех.	ист.	Tub	(r/c)	,	Ст/ПДК	Xm	0m	Ст/ПДК	Xm	Úm
1	(d)	1	1	0,7622400	1	0,20	319,58	8,78	0,22	319,58	8,78
1	1	2	1.1	0,7622400	1.1	0,20	319,58	8,78	0,22	319,58	8,78
1	1	3	1.1	0,9600000	1	0,20	358,65	11,05	0,22	358,65	11.05
	Ит	oro:		2,4844800		0,61			0,66		

Вещество: 0304 Азот (II) оксид (Азота оксид)

Nº	No	No		Выброс	311		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	39	1	- 3	0,1238640	1	0,02	319,58	8,78	0,02	319,58	8,78
1	1	2	3	0,1238640	1	0,02	319,58	8.78	0,02	319,58	8,78
1	1	3	4	0,1560000	-1	0,02	358,65	11,05	0,02	358,65	11,05
	Ит	oro:		0,4037280		0,05			0,05		

Вещество: 0328 Углерод (Сажа)

NΩ	No	No	200	Выброс	12.1		Лето			Зима	
nn.	цех.	ист.	Tun	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	1	1	0,0377150	1	0,01	319,58	8,78	0,01	319,58	8,78
1	1	2	1	0,0377150	1	0,01	319,58	8,78	0,01	319,58	8,78
1	1.	3	7.1	0,0475000	1	0,01	358,65	11,05	0,01	358,65	11,05
	Ит	oro:		0,1229300		0,04	-		0,04		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

No	No.	No	5	Выброс	15		Лето			Зима	
nn.	цех.	ист.	Tun	(r/c)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	1	1	0,2646667	1	0,03	319,58	8,78	0,03	319,58	8,78
1	1	2	1.0	0,2646667	1	0.03	319,58	8.78	0,03	319,58	8,78
1	1	3	-1	0,3333333	1	0.03	358,65	11,05	0,03	358.65	11,05
	Ито	ого:		0,8626667		0,08			0,09		

Вещество: 0337 Углерод оксид

No	No	No	24	Выброс	15		Лето			Зима	
nn.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	1	1	0,7940000	1	0,01	319,58	8,78	0,01	319,58	8.78
1	1	2	1	0,7940000	1	0,01	319,58	8,78	0,01	319,58	8,78
1	1	3	7.8	1,0000000	=1	0.01	358,65	11,05	0,01	358,65	11,05

Maria willow	2.5000000	0.03	0.00
Итого:	2,5880000	0,03	0,03

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

No	Ng	No	12-11	Выброс			Лето			Зима	
nn.	цех.	ист.	Tun	(r/c)		Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	4	1	0,0000008	1	0,00	319,58	8,78	0,00	319,58	8,78
1	9	2	30	0,0000008	1	0,00	319,58	8,78	0,00	319.58	8.78
4	1	3	1	0,0000010	1	0,00	358,65	11,05	0,00	358,65	11,05
	Ит	ого:		0,0000026	7.7	0,01			0,01	700	

Вещество: 1325 Формальдегид

N₂	Ne	Ng		Выброс	12		Лето			Зима	
nn.	цех.	ист.	Тип	(F/C)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	1	9	1 1	0,0094839	187	0,01	319,58	8,78	0,01	319,58	8,78
1	1	2	1.3	0,0094839	1	0,01	319,58	8,78	0,01	319,58	8,78
1	40	3	1	0,0119444	1	0,01	358,65	11,05	0,01	358,65	11,05
	Ит	oro:		0,0309122		0,03			0,03		

Вещество: 2732 Керосин

No	No	No	124	Выброс	le.		Лето			Зима	
пл.	цех.	ист.	Тип	(r/c)	F	Ст/ПДК	Xm	Um	Ст/ПДК	Xm	Um
1	- 1	-1	1	0,2269517	1	0,01	319,58	8,78	0,01	319,58	8,78
9	1	2	13	0,2269517	1	0,01	319,58	8,78	0,01	319,58	8,78
9	1	3	1111	0,2858333	1	0,01	358,65	11,05	0,01	358,65	11,05
	Ит	oro:		0,7397367		0,03			0,03		

Выбросы источников по группам суммации

Типы источников:

- 1 Точечный; 2 Линейный;

- 3 Неорганизованный; 4 Совокупность точечных источников;
- 5 С зависимостью массы выброса от скорости ветра;
 6 Точечный, с зонтом или выбросом горизонтально;
- 7 Совокупность точечных (зонт или выброс вбок); 8 Автомагистраль (неорганизованный линейный); 9 Точечный, с выбросом в бок;

- 10 Свеча.

Группа суммации: 6204 Азота диоксид, серы диоксид

Ne	Ng	No		Код	Выброс			Пето			Зима	
	цех.	ист.	Тип	B-89	(r/c)	F	ст/пдк	Xm	Um	Ст/ПДК	Xm	Um
T	4	9	4	0301	0,7622400	1	0,20	319,58	8,78	0,22	319,58	8,78
4	1	2	4	0301	0,7622400	1	0,20	319,58	8,78	0,22	319,58	8,78
4	4	3	4	0301	0,9600000	1	0,20	358,65	11,05	0,22	358,65	11,05
1	1	(d)	1	0330	0,2646667	1	0,03	319,58	8,78	0,03	319,58	8,78
1	4	2	3	0330	0,2646667	1	0,03	319.58	8,78	0,03	319,58	8,78
4	1	3	1	0330	0,3333333	1	0,03	358,65	11,05	0,03	358,65	11,05
		Итог	o:		3,3471467	-	0,43	+		0,47	1 - 1	

Суммарное значение Ст/ПДК для группы рассчитано с учетом коэффициента неполной суммации 1,60

Расчет проводился по веществам (группам суммации)

			Предель	но допуст	имая конце	нтрация		Comon	mo	новая
Код	Наименование вещества		г максимаг нцентраци	e e		счет средн нцентраци	640	Поправ. козф. к ПДК		центр.
+ †		Тип	Спр. эначение	Исп. в расч.	Тип	Спр. значение	Исп. в расч.	обув*	Учет	Интерп,
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0,200	0,200	ПДК с/с	0,040	0.040	1	Да	Нет
0304	Азот (II) оксид (Азота оксид)	ПДК м/р	0,400	0,400	ПДК с/с	0,060	0,060	- 4	Да	Нет
0328	Углерод (Сажа)	ПДК м/р	0,150	0,150	пдк с/с	0,050	0,050	1	Her	Нет
0330	Сера диоксид (Ангидрид сернистый)	ПДК м/р	0,500	0,500	ПДК с/с	0,050	0,050		Да	Нет
0337	Углерод оксид	ПДК м/р	5,000	5,000	ПДК с/с	3,000	3,000	1	Да	Нет
0703	Бенз/а/пирен (3.4-Бенэпирен)	ПДК с/с	1,000E-06	1.000E-05	ПДК с/с	1,000E-06	1.000E-06	1	Her	Нет
1325	Формальдегид	пдк м/р	0,050	0,050	пдк с/с	0,010	0,010	4	Нет	Нет
2732	Керосин	ОБУВ	1,200	1,200	ОБУВ	1,200	1,200	- 1	Нет	Нет
6204	Группа неполной суммации с коэффициентом "1,6": Азота диоксид, серы диоксид	Группа суммации			Групла суммации	, []		1	Дв	Нет

[&]quot;Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

Secretary.	Wannishink	A		- 14	Координаты (м)				
№ поста	Наименован	ние		- 1	Χ.	Ý			
1	Новороссийск			1, 11	0,00				
Код в-ва	Usanianana na saniasaa	Фоновые концентрации							
код в-ва	Наименование вещества	Штипь	Север	Восток	Юг	Запад			
0301	Азота диоксид (Азот (IV) оксид)	0,080	0,110	0,090	0,060	0,060			
0304	Азот (II) оксид (Азота оксид)	0,120	0,050	0,050	0,070	0,060			
0330	Сера диоксид (Ангидрид сернистый)	0,002	0,002	0,002	0,002	0,002			
0337	Углерод оксид	2,000	2,000	2,000	2,000	2,000			
2902	Взвешенные вещества	0.400	0,400	0,300	0,300	0,400			

Перебор метеопараметров при расчете

Уточненный перебор

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

Код	Тип	Полное описание площадки								100
		Координаты середины 1-й стороны (м)		Координаты середины 2-й стороны (м)		Ширина	Зона влияния	Шаг (м)		Высота (м)
		X	Υ	X	Y	(M)	(M)	По ширине	По длине	
1	Полное описание	1283568,40	442942,50	1285717,70	442942,40	2163,50	0,00	50,00	50,00	2,00

Расчетные точки

V	Координ	аты (м)	Dr. (same (iii)	Total marries	0-11-11-11		
Код	х	γ	Высота (м)	Тип точки	Комментарий		
1	1284447,71	442660,35	2,00	на границе СЗЗ	Расчётная точка 001		
2	1284404,59	442769,30	2,00	на границе СЗЗ	Расчетная точка 002		
3	1284406,16	442888,02	2,00	на границе СЗЗ	Расчетная точка 003		
- 4	1284454,64	443003,51	2,00	на границе СЗЗ	Расчетная точка 004		
5	1284534,78	443085,91	2,00	на границе СЗЗ	Расчётная точка 005		
6	1284645,43	443136,00	2,00	на границе СЗЗ	Расчётная точка 006		
7	1284763,25	443139,53	2,00	на границе СЗЗ	Расчётная точка 007		
8	1284874,17	443094,62	2,00	на границе СЗЗ	Расчетная точка 008		
9	1284958,97	443006,03	2,00	на границе СЗЗ	Расчётная точка 009		
10	1284998,99	442895,43	2,00	на границе СЗЗ	Расчётная точка 010		
11	1284993,71	442775,25	2,00	на границе СЗЗ	Расчетная точка 011		
12	1284946,59	442668,65	2,00	на границе СЗЗ	Расчётная точка 012		
13	1284863,26	442584,68	2,00	на границе СЗЗ	Расчетная точка 013		
14	1284755,38	442537,37	2,00	на границе СЗЗ	Расчетная точка 014		
15	1284639,24	442534,45	2,00	на границе СЗЗ	Расчётная точка 015		
16	1284530,73	442577,42	2,00	на границе СЗЗ	Расчётная точка 016		
17	1284435,58	442671,78	2,00	точка пользователя	Расчётная точка 017		
18	1284362,18	442749,36	2,00	точка пользователя	Расчётная точка 018		
19	1284351,25	442542,22	2,00	на границе жилой зоны	Расчетная точка 019		

Результаты расчета по веществам (расчетные точки)

Типы точек:

- 0 расчетная точка пользователя 1 точка на границе охранной зоны
- 2 точка на границе производственной зоны
 3 точка на границе СЗЗ
 4 на границе жилой зоны
 5 на границе застройки

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
16	1204000,7	442577,42	2,00	0,82	32	10,10	0,37	0,55	3
17	1204433,5	442671,78	2,00	0,79	58	10,20	0,22	0,45	0
1	1204441,1	442660,35	2,00	0,79	55	10,20	0,22	0,45	3
19	1204331,2	442542,22	2,00	0,77	45	10,50	0,40	0,55	4
18	1204302,1	442749,36	2,00	0,75	76	10,40	0,25	0,45	:0
15	1204009,2	442534,45	2,00	0,75	13	10,40	0,42	0,55	3
2	1204404,9	442769,30	2,00	0,74	77	10,20	0,25	0,45	3
14	1204700,5	442537,37	2,00	0,71	354	10,60	0,44	0,55	3
13	1284803,2	442584,68	2,00	0,69	327	9,80	0,45	0,55	3
12	1284940,9	442668,65	2,00	0,69	315	10,90	0,46	0,55	3
3	1284400,1	442888,02	2,00	0,65	98	10,40	0,32	0,45	3
9	1284908,9	443006,03	2,00	0,64	237	10,50	0,07	0,30	3
4	1204404,6	443003,51	2,00	0,61	120	10,50	0,35	0,45	3
5	1284554,7	443085,91	2,00		135	11,50	0,36		3
10	1204990,9	442895,43	2,00	0,58	260	10,40	0,11	0,30	3
8	12040/4,1	443094,62	2,00	-	214	10,40	0,12	0,30	3
11	1284995,	442775,25	2,00		315	2,00	0,55	0,55	3
6	1204040,4	443136,00	2,00	0,55			0,55	0,55	3
7	1204703,2	443139,53	2,00			- 1	0,55		3

Вещество: 0304 Азот (II) оксид (Азота оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
19	1204301,2	442542,22	2,00	0,30	49	1,90	0,30	0,30	
18	1204302,1	442749,36	2,00	0,30	75	1,90	0,30	0,30	
9	1204900,9	443006,03	2,00	0,30	237	1,90	0,30	0,30	3
17	C,CCPPOST	442671,78	2,00	0,30	58	1,90	0,30	0,30	C
8	1204014,1	443094,62	2,00	0,30	215	1,90	0,30	0,30	3
1	1204447,1	442660,35	2,00	0,30	55	1,90	0,30	0,30	2
10	1204990,9	442895,43	2,00	0,30	258	1,90	0,30	0,30	3
16	1204000,7	442577,42	2,00	0,30	33	1,90	0,30	0,30	3
2	1204404,0	442769,30	2,00	0,30	77	1,90	0,30	0,30	
7	1204703,2	443139,53	2,00	0,30	194	1,90	0,30	0,30	. 3
11	1204993,7	442775,25	2,00	0,30	280	1,90	0,30	0,30	- 3
15	1204039,2	442534,45	2,00	0,30	11	1,90	0,30	0,30	3
3	1204400,1	442888,02	2,00	0,30	100	1,90	0,30	0,30	- 3
6	1204040,4	443136,00	2,00		173	1,90	0,30	0,30	3
12	1204940,0	442668,65	2,00	0,30	301	1,90	0,30	0,30	3

14	1204/00,0	442537,37	2,00	0,30	348	1,90	0,30	0,30	3
13	1204003,2	442584,68	2,00	0,30	324	1,90	0,30	0,30	3
4	1204404,0	443003,51	2,00	0,30	125	1,90	0,30	0,30	3
5	1284034,7	443085,91	2,00	0,30	150	1,90	0,30	0,30	3

Вещество: 0328 Углерод (Сажа)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
17	1204435,5	442671,78	2,00	0,04	58	10,20	0.00	0,00	0
1	1204441,7	442660,35	2,00	0,04	55	10,20	0,00	0,00	3
9	7204900,9	443006,03	2,00	0,04	237	10,50	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,03	76	10,40	0,00	0,00	Q
19	1204301,2	442542,22	2,00	0,03	49	10,50	0,00	0,00	4
2	1204404,5	442769,30	2,00	0,03	77	10,20	0,00	0,00	3
10	1204990,9	442895,43	2,00	0,03	260	10,40	0,00	0,00	3
8	1204074,1	443094,62	2,00	0,03	214	10,40	0,00	0,00	3
16	1204000,1	442577,42	2,00	0,03	32	10,10	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,02	98	10,40	0,00	0,00	3
15	1204009,2	442534,45	2,00	0,02	.13	10,40	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,02	280	9,80	0,00	0,00	3
7	1204/03,2	443139,53	2,00	0,02	194	9,80	0,00	0,00	3
14	1284/50,3	442537,37	2,00	0,02	354	10,60	0,00	0,00	- 3
4	1204404,6	443003,51	2,00	0,02	120	10,50	0,00	0,00	3
12	1204940,0	442668,65	2,00	0,02	301	9,60	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,02	173	9,60	0,00	0,00	3
13	1204003,2	442584,68	2,00	0,02	327	9,80	0,00	0,00	3
5	1204034,7	443085,91	2,00	0,02	146	9,80	0,00	0,00	3

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
17	1204430,0	442671,78	2,00	0,08	58	10,20	8,00E-04	4,00E-03	0
1	1209497,7	442660,35	2,00	0,08	55	10,20	8,00E-04	4,00E-03	3
9	1204900,9	443006,03	2,00	0,08	237	10,50	8,00E-04	4,00E-03	3
18	1204302,1	442749,36	2,00	0,07	76	10,40	8,00E-04	4,00E-03	0
19	1204001,2	442542,22	2,00	0,07	49	10,50	8,00E-04	4,00E-03	4
2	1204404,5	442769,30	2,00	0,07	77	10,20	8,00E-04	4,00E-03	3
10	1204990,9	442895,43	2,00	0,07	260	10,40	8,00E-04	4,00E-03	3
8	1204074,1	443094,62	2,00	0,06	214	10,40	8,00E-04	4,00E-03	3
16	1204030,7	442577,42	2,00		32	10,10	8,00E-04	4,00E-03	3
3	1204400,1	442888,02	2,00	0,05	98	10,40	8,00E-04	4,00E-03	3
15	1204009,2	442534,45	2,00	0,05	13	10,40	8,00E-04	4,00E-03	3
11	1204993,1	442775,25	2,00	0,05	280	9,80	8,00E-04	4,00E-03	3
7	1204703,2	443139,53	2,00	0,05	194	9,80	8,00E-04	4,00E-03	3
14	1204700,3	442537,37	2,00	0,04	354	10,60	8,00E-04	4,00E-03	3
4	1204404,0	443003,51	2,00		120	10,50	8,00E-04	4,00E-03	3
12	1204940,0	442668,65	2,00	0,04	301	9,60	8,00E-04	4,00E-03	3
6	1204040,4	443136,00	2,00		173	9,60	8,00E-04	4,00E-03	3
13	1204003,2	442584,68	2,00	0,03	327	9,80	8,00E-04	4,00E-03	3

5	1204004,/	1 21213(1185) (41)	2.00	0.03	146	9,80	8,00E-04	4,00E-03	3
140	I B	1,144220141	-1	2122	1.15	*1~~	min and it	Na Port	

Вещество: 0337 Углерод оксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
17	1204430,0	442671,78	2,00	0,41	58	10,20	0,39	0,40	0
1	1204441,1	442660,35	2,00	0,41	55	10,20	0,39	0,40	3
9	1204906,9	443006,03	2,00	0,41	237	10,50	0,39	0,40	3
18	1284302,1	442749,36	2,00	0,41	76	10,40	0,39	0,40	0
19	1204301,2	442542,22	2,00	0,41	49	10,50	0,39	0,40	4
2	1284404,0	442769,30	2,00	0,41	77	10,20	0,39	0,40	3
10	1204990,9	442895,43	2,00	0,41	260	10,40	0,39	0,40	3
8	1204074,1	443094,62	2,00	0,41	214	10,40	0,39	0,40	3
16	1204000,/	442577,42	2,00	0,41	32	10,10	0,39	0,40	3
3	1204400,1	442888,02	2,00	0,41	98	10,40	0,39	0,40	3
15	1204039,2	442534,45	2,00	0,41	13	10,40	0,39	0,40	3
11	1204993,7	442775,25	2,00	0,41	280	9,80	0,39	0,40	3
7	1204/03,2	443139,53	2,00	0,41	194	9,80	0,39	0,40	3
14	1204700,3	442537,37	2,00	0,41	354	10,60	0,40	0,40	3
4	1284404,0	443003,51	2,00	0,41	120	10,50	0,40	0,40	3
12	1204940,0	442668,65	2,00	0,41	301	9,60	0,40	0,40	3
6	1284040,4	443136,00	2,00	0,41	173	9,60	0,40	0,40	- 3
13	1284863,2	442584,68	2,00	0,41	327	9,80	0,40	0,40	3
5	1204034,7	443085,91	2,00		146	9,80	0,40	0,40	3

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

N₂	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
17	1204430,0	442671,78	2,00	0,01	58	10,20	0,00	0,00	0
1	1204447,7	442660,35	2,00	0,01	55	10,20	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,01	237	10,50	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,01	76	10,40	0,00	0,00	0
19	1204301,2	442542,22	2,00	0,01	49	10,50	0,00	0,00	4
2	1204404,0	442769,30	2,00	0,01	77	10,20	0,00	0,00	3
10	1204990,9	442895,43	2,00	9,77E-03	260	10,40	0,00	0,00	3
8	1204074,1	443094,62	2,00		214	10,40	0,00	0,00	3
16	1204000,1	442577,42	2,00	9,47E-03	32	10,10	0,00	0,00	3
3	1204400,1	442888,02	2,00	7,04E-03	98	10,40	0,00	0,00	3
15	1204039,2	442534,45	2,00	6,82E-03	13	10,40	0,00	0,00	3
11	1204993,7	442775,25	2,00	6,80E-03	280	9,80	0,00	0,00	3
7	1204703,2	443139,53	2,00	6,80E-03	194	9,80	0,00	0,00	3
14	1204700,5	442537,37	2,00	5,54E-03	353	10,50	0,00	0,00	3
12	1204940,0	442668,65	2,00	5,49E-03	301	9,60	0,00	0,00	3
4	1204404,0	443003,51	2,00	5,49E-03	120	10,50	0,00	0,00	3
6	1204040,4	443136,00	2,00	5,49E-03	173	9,60	0,00	0,00	3
13	1204000,2	442584,68	2,00	4,99E-03	327	9,80	0,00	0,00	3
5	1204034,7	443085,91	2,00	4,95E-03	146	9,80	0,00	0,00	3

Вещество: 1325 Формальдегид

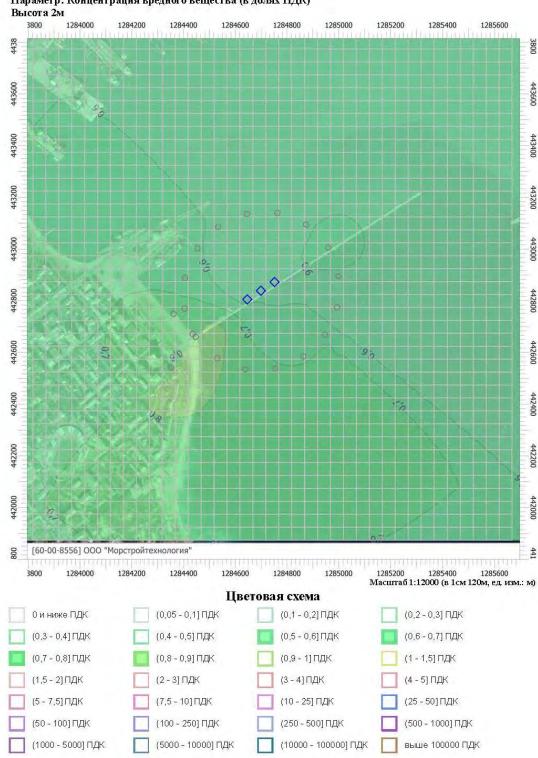
Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
17	1204430,0	442671,78	2,00	0,03	58	10,20	0,00	0,00	-:0
1	1204447,7	442660,35	2,00	0,03	55	10,20	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,03	237	10,50	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,02	76	10,40	0,00	0,00	0
19	1284351,2	442542,22	2,00	0,02	49	10,50	0,00	0,00	- 4
2	1284404,9	442769,30	2,00	0,02	77	10,20	0,00	0,00	3
10	1284998,9	442895,43	2,00	0,02	260	10,40	0,00	0,00	3
8	1204074,1	443094,62	2,00	0,02	214	10,40	0,00	0,00	3
16	1204000,1	442577,42	2,00	0,02	32	10,10	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,02	98	10,40	0,00	0,00	3
15	1204039,2	442534,45	2,00	0,02	13	10,40	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,02	280	9,80	0,00	0,00	3
7	1204703,2	443139,53	2,00	0,02	194	9,80	0,00	0,00	3
14	1204700,3	442537,37	2,00	0,01	354	10,60	0,00	0,00	3
4	1204404,0	443003,51	2,00	0,01	120	10,50	0,00	0,00	3
12	1284940,5	442668,65	2,00	0,01	301	9,60	0,00	0,00	3
6	1204040,4	443136,00	2,00	0,01	173	9,60	0,00	0,00	3
13	1204003,2	442584,68	2,00	0,01	327	9,80	0,00	0,00	3
5	1204054,7	443085,91	2,00	0,01	146	9,80	0,00	0,00	3

Вещество: 2732 Керосин

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
17	1204433,0	442671,78	2,00	0,03	58	10,20	0,00	0,00	.0
1	1284447,7	442660,35	2,00	0,03	55	10,20	0,00	0,00	3
9	1204900,9	443006,03	2,00	0,03	237	10,50	0,00	0,00	3
18	1204302,1	442749,36	2,00	0,02	76	10,40	0,00	0,00	0
19	1284301,2	442542,22	2,00	0,02	49	10,50	0,00	0,00	4
2	1204404,3	442769,30	2,00	0,02	77	10,20	0,00	0,00	3
10	1204990,9	442895,43	2,00	0,02	260	10,40	0,00	0,00	3
8	12040/4,1	443094,62	2,00	0,02	214	10,40	0,00	0,00	3
16	1204050,7	442577,42	2,00	0,02	32	10,10	0,00	0,00	3
3	1204400,1	442888,02	2,00	0,02	98	10,40	0,00	0,00	3
15	1204009,2	442534,45	2,00	0,02	13	10,40	0,00	0,00	3
11	1204993,7	442775,25	2,00	0,02	280	9,80	0,00	0,00	3
7	1204/03/2	443139,53	2,00	0,02	194	9,80	0,00	0,00	3
14	1204/00,3	442537,37	2,00	0,01	354	10,60	0,00	0,00	3
4	1284404,8	443003,51	2,00	0,01	120	10,50	0,00	0,00	3
12	1284940,0	442668,65	2,00	0,01	301	9,60	0,00	0,00	3
6	1204040,4	443136,00	2,00		173	9,60	0,00	0,00	3
13	1204003,2	442584,68	2,00	0,01	327	9,80	0,00	0,00	3
5	1204034,7	443085,91	2,00	0,01	146	9,80	0,00	0,00	3

Вещество: 6204 Азота диоксид, серы диоксид

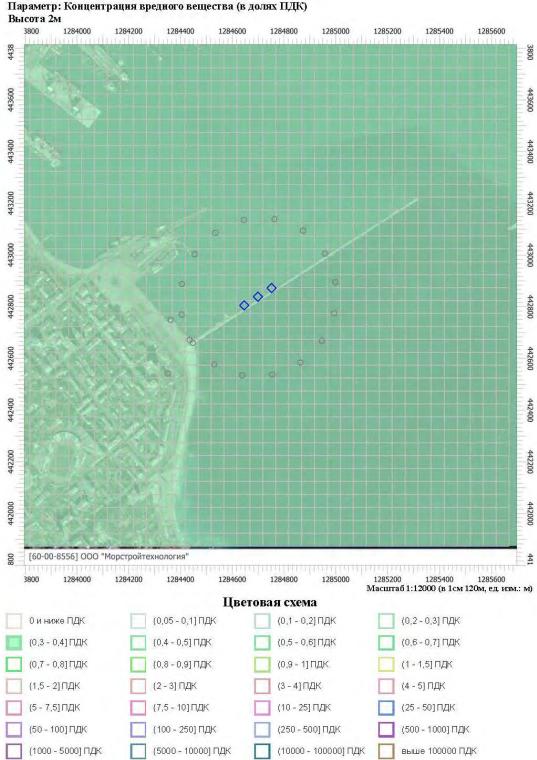
Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до исключения	Тип точки
16	1204030,7	442577,42	2,00	0,54	32	10,10	0,22	0,35	3
17	1204430,0	442671,78	2,00	0,53	58	10,20	0,12	0,28	0
1	1204447,7	442660,35	2,00	0,53	55	10,20	0,12	0,28	3
19	1204301,2	442542,22	2,00	0,50	45	10,50	0,24	0,35	4
18	1284302,7	442749,36	2,00	0,50	76	10,40	0.14	0,28	0
2	7204404,9	442769,30	2,00	0,49	77	10,20	0,14	0,28	3
15	1204039,2	442534,45	2,00	-	13	10,40	0,25	0,35	3
14	1204/00,3	442537,37	2,00	0,46	354	10,60	0,27	0,35	3
13	1204003,2	442584,68	2,00	0,45	327	9,80	0,28	0,35	3
12	1204940,0	442668,65	2,00	0,45	315	10,90	0,28	0,35	3
9	1204900,9	443006,03	2,00	0,44	237	10,50	0,04	0.19	3
3	1204400,1	442888,02	2,00	0,43	98	10,40	0,19	0,28	3
4	1204404,0	443003,51	2,00	0,40	120	10,50	0,21	0,28	3
10	1204990,9	442895,43	2,00	0,39	260	10,40	0,06	0,19	3
8	1204074,7	443094,62	2,00	0,39	214	10,40	0,06	0,19	3
5	1284034,1	443085,91	2,00	0,38	135	11,50	0,22	0,28	3
11	1284995,7	442775,25	2,00	0,35	315	2,00	0,35	0,35	3
6	1204040,4	443136,00	2,00	0,35	- Z	- 6	0,35	0,35	3
7	1204703,2	443139,53	2,00	-	-	- 4	0,35		3


Отчет

Вариант расчета: Западный мод (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 0301 (Азота диоксид (Азот (IV) оксид))


Параметр: Концентрация вредного вещества (в долях ПДК)

Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО

Тип расчета: Концентрации по веществам Код расчета: 0304 (Азот (II) оксид (Азота оксид))

Отчет Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0328 (Углерод (Сажа)) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 443600 443400 443400 443200 443000 442800 442600 442400 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

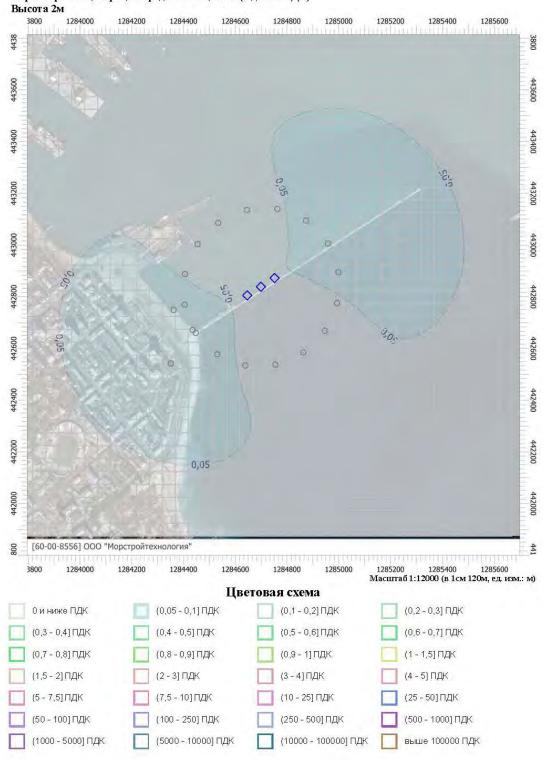
(500 - 1000] ПДК

выше 100000 ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(100 - 250] ПДК


(5000 - 10000] ПДК

Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по MPP-2017 [20.05.2018 14:48 - 20.05.2018 14:51] , ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: 0330 (Сера диоксид (Ангидрид сернистый)) Параметр: Концентрация вредного вещества (в долях ПДК)

Отчет Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0337 (Углерод оксид) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 3800 443600 443400 443400 443200 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1285000 1284600 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2-0,3] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,3 - 0,4] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2 - 3] ПДК (3 - 4] ПДК (4 - 5] ПДК

(10 - 25] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(25 - 50] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(5 - 7,5] ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(7,5 - 10] ПДК

(100 - 250] ПДК

(5000 - 10000) ПДК

Отчет Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51] , ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 0703 (Бенз/а/пирен (3,4-Бензпирен)) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 443600 443400 443400 443200 443000 442800 442600 442400 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1284600 1285000 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК (5 - 7,5] ПДК (7,5 - 10] ПДК (10 - 25] ПДК (25 - 50] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(100 - 250] ПДК

(5000 - 10000) ПДК

Отчет Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 1325 (Формальдегид) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 443600 443400 443400 443200 443000 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 1284800 1284600 1285000 3800 1284000 1284200 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК

(10 - 25] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(25 - 50] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

(5 - 7,5] ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(7,5 - 10] ПДК

(100 - 250] ПДК

(5000 - 10000) ПДК

Отчет Вариант расчета: Западный мол (1) - Расчет рассенвания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО Тип расчета: Концентрации по веществам Код расчета: 2732 (Керосин) Параметр: Концентрация вредного вещества (в долях ПДК) Высота 2м 3800 1284000 1284200 1284400 1284600 1284800 1285000 1285200 1285400 1285600 4438 3800 443600 443400 443400 443200 443000 443000 442800 442600 442400 442200 442200 [60-00-8556] ООО "Морстройтехнология" 1284200 1284800 1284600 1285000 3800 1284000 1284400 1285200 1285400 1285600 Масштаб 1:12000 (в 1cм 120м, ед. изм.: м) Цветовая схема 0 и ниже ПДК (0,05 - 0,1]ПДК (0,1 - 0,2] ПДК (0,2 - 0,3] ПДК (0,3 - 0,4] ПДК (0,4 - 0,5] ПДК (0,5 - 0,6] ПДК (0,6 - 0,7] ПДК (0,7 - 0,8] ПДК (0,8 - 0,9] ПДК (0,9 - 1] ПДК (1 - 1,5] ПДК (1,5 - 2] ПДК (2-3] ПДК (3 - 4] ПДК (4 - 5] ПДК

(10 - 25] ПДК

(250 - 500] ПДК

(10000 - 100000] ПДК

(25 - 50] ПДК

(500 - 1000] ПДК

выше 100000 ПДК

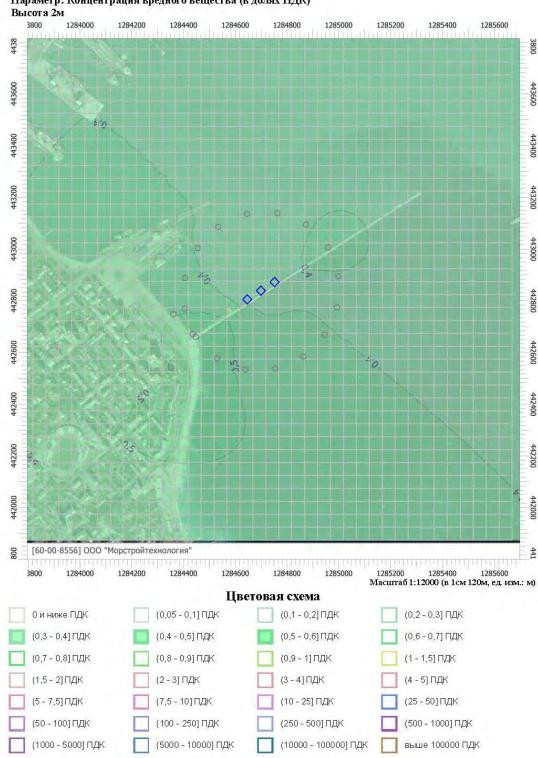
(5 - 7,5] ПДК

(50 - 100] ПДК

(1000 - 5000] ПДК

(7,5 - 10] ПДК

(100 - 250] ПДК

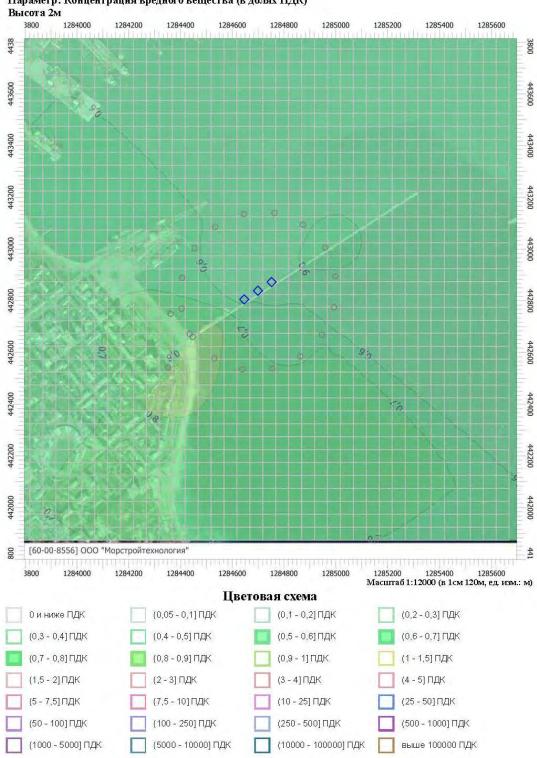

(5000 - 10000] ПДК

Отчет

Вариант расчета: Западный мод (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО

Тип расчета: Концентрации по веществам Код расчета: 6204 (Азота диоксид, серы диоксид)

Параметр: Концентрация вредного вещества (в долях ПДК)


Отчет

Вариант расчета: Западный мол (1) - Расчет рассеивания с учетом застройки по МРР-2017 [20.05.2018 14:48 - 20.05.2018 14:51], ЛЕТО

Тип расчета: Концентрации по веществам

Код расчета: Все вещества (Объединённый результат)

Параметр: Концентрация вредного вещества (в долях ПДК)

Приложение Щ. Расчет акустического воздействия на период проведения строительных работ

												İ	
Наименование величин и их описание		Ссылка	Уров	низвун	днегео	Уровни звукового давления, дб, в октавных полосах, со среднегеометрическими частотами, Гц	я, дБ, в	в окта часто	вных п	Тц		La, A6A	LMaike,
			31,5	63	125	250	500	1000	2000	4000	8000	Ŋ	
		2	8	4	S	9	7	80	6	10	11	12	13
ИШ-1 Кран плавучий (коордуната глаче (х.у.г.), м = (1284647.1,442805.1,5.0))	3.0)}												
Описание источника. Кран плавучий													
Режим работы источника:							непос	непостоянный	2				
Продолжительность работы в дневной период (7.00-23.00);								8 4ac					
Продолжительность работы в ночной период (23.00-7.00);							ľ	0.490					
Тип источника шума:						вие	виешние источники шума	сточник	ишума				
Категория источника шума:													
Вид агрегата/работ:													
Описание агрегата/работ:													
Пространственный угол излучения, рад	Ω = 6.28	нскодные даниые									П		
Эквивалентный (La) и максимальный (Lmax) уровни звука на опорном расстоянии d, дБА	d=7.3 w	исходные данные			[5]							82	80
Габариты источника шума, м		искодные данные	MUT	длина $(l_1) = 0.00$	00 1	тимрин	ширина (I ₂) = 0,00	00	BEICO	высота $(l_3) = 0.00$	00"		
Эквивалентный (LwA) и максимальный (LwMax) уровни звуковой мощности источника, дБА	ющности	LwA = La + 20g(d) + 10lg(Ω)										107,5	113,5
Спектральные поправки $K(\Delta_{s,d})$ для разложения общего уровня звуковой мощности в спектр по октавным полосам, д ${f E}$	ковой	[5]	666-	6'6	Ø1	2,5	ά	-7,3	-11,6	-16,4	-20,7		
Октавные уровни звуковой мощности источнина Lw, дБ		$Lw = LwA + R\{\Delta_{\mu A}\}$	0	117,4	116,5	110 1	104,5	100,2	6'56	91,1	86,8		
Октавные уровни звуковой мощности максимального звука источника Lwx, дБ	ика Імх, дБ	LWK = LWMBK - K(Ash)	0	123,4	122,5	116 1	110,5	106,2	101,9	1,76	92,8		0
Поправка на время работы источника днём ∆Тд, дБ	H 8 = 1	1018(1/16)					m				i		

1		7	3	4	2	9	7	8	6	10	11	12	13
Поправка на время работы источника ночью ∆Тн, дБ	т = П ч время работы	10Lg(t;/8)		7	источн	к не ра	источник не работает в ночное время	ночное	время	1			-
Эквивалентные уровни звуковой мощности источника днём,	iëm, Lw, дБ	LW + ATA	0	114,4	113,5	107	101,5	2,79	92,9	1/88	83,8	F	11
Эквивалентные уровни звуковой мощности источнина ночью, Lw, дБ	, Lw, дБ	Lw + ATH	0	0	0	0	0	0	۵	٥	0		
ИШ-2 Кран плавучий (координаты на плане (куд), м = (1284699.7,442838.7,5.0)	2838.7,5.0)												
Описание источника: Кран плавучий													
Режим работы источника:			L				неп	непостоянный	Nin				
Продолжительность работы в дневной период (7,00-23,00):								8 4ac					
Продолжительность работы в ночной период (23.00-7.00);								0 vac					
Тип источника шума:)-				æ	внешние источники шума	источни	ки шума				
Категория источника шума:		1											
Вид агрегата/работ:		1-1											
Описание агрегата/работ;						ı							
Пространственный угол излучения, рад.	Ω = 6.28	исходные данные				II	I		ī				
Эквивалентный (La) и максимальный (Lmax) уровни звука на опорном расстоянии d, дБА	d=7.5 M	искодные данные										82	80
Габариты источника шума, м		исходные данные	W/A	длина (1,1) = 0.00	8	мири	ширина (I ₂) = 0.00	00.0	Bbicc	высота (Із) = 0.00	00.00		
Эквивалентный (LwA) и максимальный (LwMax) уровни звуковой мощности источника, дБА	вой мощности	LwA = La + 20 g(d) + 10 g(Ω)										107,5	113,5
Спектральные поправки $K[\Delta_{\lfloor A \rfloor}]$ для разложения общего уровня звуковой мощности в спектр по октавным полосам, дБ	и звуковой	[5]	666-	6'6	άn	2,5	ń	-7,3	-11,6	-16,4	-20,7		
Октавные уровни звуковой мощности источника Lw, дБ		$LW = LWA + R(\Delta_{LA})$	0	117,4	116,5	110	104,5	100,2	95,9	91,1	86,8		
Октавные уровни звуковой мощности максимального звука источника Lwx, дБ	сточника Імх, дБ	$Lwx = LwWiax + K(\Delta_{L\delta})$	0	123,4	122,5	116	110,5	106,2	6,101	1,76	92,8		
Поправка на время работы источника днём ∆Тд, дБ	т.< В ч время работы	10LB(1/15)					ņ						
Поправка на время работы источника ночью ∆Тн,дБ	14.100kg RM9g8	1018(1/8)			источн	к не ра	источник не работает в ночное время	ночное	время				-

		2	3	4	S	9	7	80	6	97	11	12	13
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	w, AB	LW + ΔTA	0	114,4	113,5	107	101,5	97,2	92,9	88,1	83,8		
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	Lw, 45	Lw + ATH	0	0	٥	0	0	0	o	0	0		1
ИШ-3 БУКСИР [координаты на плане (к.у.л.), м = (1284752.4,442872,4,5.0)]											0		
Описание источника: Буксир													110
Режим работы источника:							непо	непостоянный	25	L			Н
Продолжительность работы в дневной период (7,00-23.00);								S 4ac					1
Продолжительность работы в ночной период (23.00-7.00):								0 yac					
Тип источника шума:						8	внешние источники шума	сточник	и шума				
Категория источника шума:		I											1
Вид агрегата/работ:													
Описание агрегата/работ:													
Пространственный угол излучения, рад.	0=628	исходные данные											
Эквивалентный (La) и максимальный (Lmax) уровни звука на опорном расстоянии d, дБА	d=7.5 m	искодные данные										82	00
Габариты источника шума, м		исходные данные	ANA	длина ((1) = 0.00	00'	мири	ширина (І₂) = 0.00	00	B61CO	Высота (I_3) = 0.00	00,		
Эквивалентный (LwA) и максимальный (LwMax) уровни звуковой мощности источника, дБА	зой мощности	LwA=La+20g(d)+ 10g(Ω)					П	Ħ				107,5	113,5
Спектральные поправки К(Δ _{IA}) для разложения общего уровня мощности в спектр по октавным полосам, дБ	ровня звуковой	(5)	666-	6'6	O	2,5	ή	-7,3	-11,6	-16,4	-20,7		
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + R(\Delta_{Lk})$	0	117,4	116,5	110	104,5	100,2	6,26	1,16	86,8		
Октавные уровни звуковой мощности максимального звука источника Lwx, дБ	точника Lwx, дБ	$Lwx = LwMax + K[\Delta_{LA}]$	a	123,4	122,5	116	110,5	106,2	6,101	1′26	8726		
Поправка на время работы источника днём ∆Тд, дБ	t = 8 y spews pa6ora	10Lg(1/16)					η						=1
Поправка на время работы источника ночью ∆Тн, дБ	т = Д ч время работы	10년(1/8)			источн	ик не ра	источник не работает в ночное время	в аоньо	ремя	21			
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	W, 46	Lw + 5Tg	0	114,4	113,5	107	101,5	97,2	92,9	80.1	80		

		2	3	4	2	9	7	8	6	10	11	12	13
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	Ім, дБ	LW + ΔŢH	0	ø	0	0	0	0	0	O	0	Ŧ	
ИШ-4 ДЭС [коордунаты на гиане (х.у.с), м = (1384573.4,4442746.6,1.0)]													9
Описание источника: ДЭС													11
Режим работы источника:			L				не	непостоянный	B150	ŀ			
Продолжительность работы в дневной период (7,00-23.00):								8 4ac					
Продолжительность работы в ночной период (23.00-7.00):								0 yac					i
Тип источника шума:		0.4					внешние источники шума	ИСТОЧНЬ	ни шум	e			
Категория источника шума:) i											
Вид агрегата/работ:		T											
Описание агретата/работ:													
Пространственный угол излучения, рад.	Q=6.28	исходные данные									H		7
Эквивалентный (La) и максимальный (Lmax) уровни звука на опорном расстоянии d, дБА	d=7.5w	исходные данные						1				17	11
Габариты источника шума, м		исходные данные	Any	длина (І ₁) = 0,00	00'0	Мир	ширина (12) = 0.00	0.00	Bbio	высота (Із) = 0.00	00.00		
Эквивалентный (LwA) и максимальный (LwMax) уровни звуковой мощности источника, дБА	ой мощности	LwA=La+20(g(d)+ 10(g(Ω)						1				5'96	96,5
Спектральные поправки $K(\Delta_{Ld})$ для разложения общего уровня мощности в спектр по октавным полосам, дБ	овня звуковой	(5)	666-	6'6	co)	2,5	ù	-7,3	-11,6	-16,4	7'02-		
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + R\{\Delta_{Lb}\}$	0	106,4	105,5	93	93,5	89,2	84,9	80,1	75,8		
Октавные уровни звуковой мощности максимального звука ис	ка источника Lwx, дБ	Lwx = LwMax + K(A _{La})	0	106,4	105,5	66	5'86	2'68	84,9	1,08	75,8		
Поправка на время работы источника днём ∆Тд, дБ	т = В ч время работы	1018(5/16)					67						
Поправка на время работы источника ночью ∆Тн, дБ	±=D w expews pagora	1018(1/8)			источн	ик не ра	источник не работает в ночное время	ночное	время	C Y			=1
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	м, дБ	Lw + ΔTA	0	103,4	102,5	96	90,5	86,2	81,9	77,1	72,8		
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	Lw, AB	Lw + ΔTH	ø	0	0	0	0	0	Ō	0	0		

		7	3	4	0			,		27	1	77	3
ИШ-5 Автопогрузчик (координата на олане (x,y,z), м = (1284527.7,442718.0,1.0))	((0,1,0,1)												
Описание источника: Автопогрузчик			1.4										
Режим работы источника:					Н		непо	непостоянный	ıs	L		Н	
Продолжительность работы в дневной период (7.00-23.00):		100						8 4ac					
Продолжительность работы в ночной период (23.00-7.00):								0 vac					
Тип источника шума:		1				m	внешние источники шума	сточник	4 myma				
Категория источника шума:													
Вид агрегата/работ:													
Описание агрегата/работ:									lá				
Пространственный угол излучения, рад.	D=6.28	ысходные данные					Ä						
Эквивалентный (La) и максимальный (Lmax) уровни звука на опорном расстоянии d, дБА	d=7.5 m	исходные данные			Ч							75	75
Габариты источника шума, м		мскодные данные	ми	длина (1₁) = 0.00	000	мфип	ширина (I ₂) = 0.00	00	Baicot	высота ((3) = 0.00	00.	Н	1.7
Эквивалентный (LwA) и максимальный (LwMax) уровни звуковой мощности источника, дБА	юй мощности	LwA = La + 20(g(d) + 10(g(Ω)										100,5	100,5
Спектральные поправки К $(\Delta_{i,d})$ для разложения общего уровн мощности в спектр по октавным полосам, дБ	ровня звуковой	(9)	666-	6'6	ø	2,5	η	-7,3	-11,6	-16,4	-20,7		
Октавные уровни звуковой мощности источника Lw, дБ		$LW = LWA + K(\Delta_{LA})$	0	110,4	109,5	103	5'26	93,2	88,9	84,1	79,8	A	
Октавные уровни звуковой мощности максимального звука источника Lwx, дБ	точника Lwx, дБ	Lwn = LwMax + K(Aze)	0	110,4	109,5	103	5,76	93,2	6'88	84,1	79,8		
Поправка на время работы источника днём ∆Тд, дБ	т = 8 ч время работы	1018(1/16)					ņ						
Поправка на время работы источника ночью ∆Тн, дБ	т=0ч время работы	10(5:/8)			источн	ик не раб	источник не работает в ночное время	очное в	вма				
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	м, дБ	Lw + ΔTB	0	107,4	106,5	100	94,5	2,08	85,9	81,1	76,8	Ħ	
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	Ім, дБ	LW + ATH	0	0	0	0	0	0	0	0	0		-

ИШ-6 Компрессор (коорданаты ча плане (х.у.г), м = (1284730.1,442841.2,1.п))	2,1.0)]												
Описание источника; Компрессор													
Режим работы источника:							неп	непостовнный	1210	L			
Продолжительность работы в дневной период (7.00-23.00):		71						8 4ac					
Продолжительность работы в ночной период (23.00-7.00);								0 yac					
Тип источника шума:						u,	внешние источники шума	источни	ки шума				
Категория источника шума:													
Вид агрегата/работ:													
Описание агрегата/работ:													
Пространственный угол излучения, рад.	Ω=6.28	мсходные данные					À						
Эквивалентный (La) и максимальный (Lmax) уровни звука на опорном расстоянии d, дБА	d=7.5 w.	исходные данные			4	Ш						73	73
Габариты источника шума, м		мсходные данные	ит	длина ((₁) = 0.00	00:	имы	ширина (І ₂) = 0.00	00.0	Bbico	высота ((3) = 0.00	00.0		
Эквивалентный (LwA) и максимальный (LwMax) уровни звуковс источника, дБА	звуковой мощности	LwA = La + 20(g(d) + 10(g(Ω)					H					5'86	5/86
Спектральные поправки К $(\Delta_{i,k})$ для разложения общего уровня мощности в спектр по октавным полосам, д δ	уровня звуковой	(9)	666-	6'6	on	2,5	φ	-7,3	-11,6	-16,4	-20,7	1	
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{Ld})$	0	108,4	107,5	101	95,5	91,2	86,9	82,1	77,8		
Октавные уровни звуковой мощности максимального звука источника Lwx, дБ	точника Lwx, дБ	$Lw_{\mathbb{N}} = LwMax + K(\Delta_{Lb})$	0	108,4	107,5	101	5'56	91,2	6'98	82,1	8,77		1
Поправка на время работы источника днём ∆Тд, дБ	t = 8 g	10Lg(t/16)					ņ						
Поправка на время работы источника ночью ∆Тн, дБ	т=0ч время работы	10/5(%)			источн	ик не ра	источник не работает в ночное время	ночное	время				
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	м, дБ	Lw + ΔTB	0	105,4	104,5	98	92,5	88,2	83,9	79,1	74,8		= 1
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	Lw, дБ	LW + ΔTH	0	0	0	0	0	0	0	0	0		

Наименование величин и их описание	ž.	Ссылка	Уров	ни звун	Уровни звукового давления, дБ, в октавных полосах, со среднегеометрическими частотами, Гц	давлен метри	ия, дБ	, в окта и част	звных з	толоса Гц		La,	Lманс,
			31,5	63	125	250	200	1000	2000	4000	8000	1	
1		2	М	4	S	9	7	80	6	10	11	12	13
Источник шума: ИШ-1 Кран плавучий, координаты ис	ы источника (х,у,z), м =[1284647.10,442805.10,5.00]	1284647.10,44280	5.10,5.	[00									
Уровни звуковой мощности источника днём, Lw, дБ		искодные данные	٥	114,4	113,5	107	101,5	2,78	92,9	88,1	83,8		=1
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ика днём, Смх, дБ	искодные данные	0	123,4	122,5	116	110,5	106,2	6,101	1,76	97'8		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	0	o	0	0	0	a	0	o		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ика ночью, Імх, дБ	исходные данные	0	٥	0	0	0	0	0	0	0	H	1
Поправка на телесный угол DS., дБ	Ω=6.28	10Lg(4x/53)	m	m	т	m	m	m	m	м	m		=1
Показатель направленности источника Di, дБ		ясходные данные	0	o	o	0	0	0	O	0	0		
Поправка на направленность источника Dc, дБ	20	07 + D(m	m	m	3	13	6	m	ю	.03		
Затухание из-за геометрической дивергенции, Adlv, дБ	расстояние = 246,42 м	ф-na (7) [10]					8/85						- 4
Коэффициент затухания звука в атмосфере $lpha$, д $f E/$ км	Та=20,°C Ра=101.33,нПа hoth.=70%	ф-ла (5) [9]	20'0	50'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		11.7
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	o	o	0,1	6,3	2'0	1,2	77	5,7	19,1		
Снижение поверхностью земли возле источника Аѕ, дБ	65=0 h5=5m	ф-лы таб.3 [10]	2,1	4,5	-1,5	-1,5	1,5	-1,5	1,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, ДБ	Gr=1 hr=15w	ф-лы таб.3 [10]	-1,5	-1,5	1,4	7	4,9	2'0	ū	0	0		1.2

		2	3	4	2	9	7	00	6	10	11	17	13
Снижение поверхностью земли в средней зоне, Ат дБ	Gm = 1	ф-лы таб.3 [10]	9'0-	9'0-	0	a	0	0	0	a	0	T	
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	аспространения	[01] (6) en-ф	-3,6	9'£-	-0,1	S, S	b,c	8,0-	41,5	2,1,5	2,1.5		
Уровни звукового давления от источника ИШ-1 Кран плавучий в расчётной точке днём, дБ	чий в расчётной	ф-ла(3)[10]	0	62,2	2.7.2	45,4	41,5	41	36,3	28,1	10,3	46,9	55,9
Уровни звукового давления от источника ИШ-1 Кран плавучий в расчётной точке ночью, дБ	чий в расчётной	ф-ла(3)[10]	O	0	0	0	a	0	٥	0	0	0	a
Требуемое снижение днём, ∆Lтреб, дБ		ট নল (15),(16) [6]	0	-5,1	-1,4	-6,6	5,5	7	5,7	6,6-	-28,7		
Требуемое снижение ночью, ∆Lтреб, дБ		фль (15),(16) [6]	0	0	0	0	0	0	0	0	0	iii	12.7
Источник шума: ИШ-2 Кран плавучий, координаты ист	ы источника (х,у,2), м =[1284699.70,442838.70,5.00]	1284699.70,44283	38.70,5.	[00								101	
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	0	114,4	113,5	107	101,5	97,2	92,9	88,1	83,8		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ка днём, Імх, дБ	мскодные данные	0	123,4	122,5	116	110,5	106,2	101,9	1'26	97'8		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные даиные	0	Q	O	0	0	0	0	0	0		1:
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ка ночью, Імх, дБ	исходные данные	0	0	0	0	0	0	0	0	0		
Поправка на телесный угол DΩ, дБ	829=0	10Lg(4π/Ω)	E	m'	en.	m	m		m	m	m		
Показатель направленности источника Di, дБ		исходные данные.	0	0	0	Q	0	0	o	0	Ö		
Поправка на направленность источника Dc, дБ	Đ¢	DΩ+Di	3	m	9	ia	m	60	m	я	3		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 308,74 м	ф-ла (7) [10]					8'09						
Коэффициент затухания звука в атмосфере α, дБ/км	Та=20,°C Ра=101.33,кПа Ротн,=70%	ф-ла (5) [9]	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		

₩		2	3	4	5	9	7	80	6	10	11	12	13
Умет затухания звука в атмосфере Аатт, дБ		ф-ла (8) (10)	o	0	0,1	E'0	6,0	1,5	2,8	7,1	24		
Снижение поверхностью земли возле источника As, дБ	6s = 0 hs = sh	ф-лы таб.3 [10]	-1,5	3,5	-1,5	-1,5	3,5	-1,5	:1,5	2,15	-1,5		111
Снижение паверхностью земли возле приёмника Аг, дБ	Gr=1 Pr=15M	ф-лы габ.3 [10]	-1,5	2,1.5	1,8	7	s	0,7	0	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm≃.1	ф-лы таб.3 [10]	1,1	4,1	0	0	0	0	0	0	Ö		
Суммарное снижение поверхностью земли на траектории ра звука Авт, дБ	ии распространения	ф-ла (9) [10]	1,1	-4,1	6,0	5,5	3,5	8'0-	4,5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-2 Кран плавуч точке днём, дБ	лавучий в расчётной	ф-ла(3)[10]	0	Z'09	55,3	43,3	39,4	38,7	33,8	24,7	3,5	44,7	53,7
Уровни звукового давления от источника ИШ-2 Кран плавучий в расчётной точке ночью, дБ	ий в расчётной	ф-ла(3)[10]	0	0	٥	0	0	0	0	0	0	0	0
Требуємое снижение днём, ∆Lтреб, дБ		ф-лы (15),(16) [6]	0	5'9-	-2,9	6'12-	6'9-	-3,5	5,4	-13,3	-35,5	111	
Требуемое снижение ночью, <u>А</u> Lтреб, дБ	*	Флы (15),(16) [6]	a	a	o	a	0	0	0	0	a	Ell	-11
Источник шума: ИШ-3 Буксир, координаты источника (x,y,z), м =[1284752,40,442872.40,5.00]	,y,z), m=[1284752	40,442872.40,5.0	6										
Уровни звуковой мощности источника днём, Lw, дБ		эчней эчниск	Q	114,4	113,5	107	101,5	97,2	92,9	1,88	83,8		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	з днём, Імх, дБ	ысходные данные	0	123,4	122,5	116	110,5	106,2	6'101	1,76	97'8		
Уровни звуковой мощности источника ночью, Lw, дБ		исходивіє данные	0	0	0	0	0	0	0	0	0		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	з ночью, Імх, дБ	искодные данные	0	0	0	0	0	0	0	0	0		
Поправка на телесный угол ОΩ, дБ	Ω = 6.28	10Lg(4π/Ω)	3	m	3	3	3	3	m	Э	3		
Показатель направленности источника Di, дБ	9 9-	исходные данные	0	0	0	ū	0	0	Ø	ū	D		

		7	2	4	2	9	1	0	S	3	11	77	9
Поправка на направленность источника Dc, дБ	Dc	id + 00	m	m	m	m	m	m	ión	m)	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	пасстояние = 371.23 м	ф-ла (7) [10]					62,4						
Коэффициент затухания звука в атмосфере ск. дБ/км	Та=20,°C Ра=101,33,кПа ham:=70%	ф-ла (5) 191	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	0	0	0,1	0,4		1,8	3,4	8,6	28,8	-	
Снижение поверхностью земли возле источника As, дБ	6s = 0 hs = 5m	ф-лы таб.3 [10]	-1,5	-1,5	1,5	-1,5	-1,5	-1,5	1,5	3,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr = 1 fr = 1.5 m	ф.лы тяб.3 [10]	-1,5	-1,5	2,2	7	,ic	2'0	0	0	0		
Снижение поверхностью земли в средней зоне, Атт дБ	Gm ≠ 1	ф-лы таб.3 [10]	1,4	4,4	0	0	0	0	0	0	0		
Оуммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	зспространения	ф-ла (9) [10]	4,4	4,4	7,0	2,5	3,5	8'0-	4,5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-3 Буксир в расчётной точке днём, дБ	счётной точке	ф-ла(3)[10]	0	59,4	53,3	41,7	37,6	36,8	31,6	21,6	0	42,8	51,8
Уровни звукового давления от источника ИШ-3 Буксир в расчётной точке ночью, дБ	счётной точке	ф-ла(3)[10]	ō	0	0	0	0	0	0	0	0	0	0
Требуемое снижение днём, АLтреб, дБ	100	ф-лы (15),(16) [6]	0	2,7,8	4,9	9'6-	9'8	-5,4	9'2-	-18,4	0		
Требуемое снижение начью, ∆\треб, дБ		ф-лы (15),(16) (6)	ø	0	α	Q	0	0	0	0	O		
Источник шума: ИШ-4 ДЭС , координаты источника (x,y,z), м =[1284573.36,442746.63,1.00]	,z), m=[1284573.36,	442746.63,1,00]										-1	
Уровни звуковой мощности источника днём, Lw, дБ		искодные данные	0	103,4	102,5	96	90,5	86,2	81,9	77,1	72,8		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	на днём, Імх, дБ	искодные данные	0	106,4	105,5	66	93,5	89,2	84,9	1,08	75,8		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	ā	٥	o	0	0	o	0	0		

Номование из вуковогой дивертенции, AdV, дБ Со. 10 с. 23.8 соодное дета вуковогой дивертенции, AdV, дБ Со. 10 с. 23.8 со. 10 с. 23.8 з с. 23.8			2	3	4	S	9	7	80	6	10	7	77	13
равиа на телесоный усол DCJ, дб. ———————————————————————————————————	Уровни звуковой мощности максимального звука источник	а ночью, Lwx, дБ	исходиые даиные	0	0	0	0	0	0	0	0	0		
разагель направленности источника Di, дБ	Поправка на телесный угол ОΩ, дБ	Ω = 6.28	10LE(4π/Ω)	3	В	m	m	60	m	m	m	m		
равная на направленность источника Dc, дБ	Показатель направленности источника Dí, дБ		исхрдные данные	0	0	0	0	0	0	a	0	0		
ухание из-аа геометрической дивергенции, Adiv, дБ расовение = 15.2 д.м. ф-ла (7) (10) 1 (2) 2 (2) 2 (2) 2 (2) 3 (Поправка на направленность источника Dc, дБ	Dr	id+0α	6	m	m	m	60	m	Ø	ım	3		
ффициент затухания звука в атмосфере од. ДБ/Ми Тав-20,1°C ф мв (5) [9] 0,02 0,03 1,12 2,79 4,98 9,04 23,09 7/63 ТЗатухания звука в атмосфере Аатт, ДБ 65 = 0 ф мв (5) [9] 0,02 0,03 1,15	Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 152,42 м	ф-ла (7) [10]				M	54,7						
тазатухания звука в атмосфере Aatm, дБ б5 = 0 Insertine поверхностью земли возле источника Ab, дБ б5 = 0 Insertine поверхностью земли возле источника Ab, дБ б6 = 0 Insertine поверхностью земли возле источника Ab, дБ ф ны таб 3 [10] -1,5	Коэффициент затухания звука в атмосфере α., дБ/км	Та=20,°С Ра=101.33,кПа hoтн.=70%	(5) [9]	20'0	50'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63	E 3	17 11
овния ворхностью земли возле источника А5, дБ 65 = 0 (67 = 1) ф-лы таб 3 [10] -1,5 -	Учет затухания звука в атмосфере Аатт, дБ		ф-ла (8) [10]	0	a	0,1	2'0	0,4	9,0	1,4	3,5	11,8		
Овение поверхностью земли возле приёмника Аг, ДБ обте 1 дет 2	Снижение поверхностью земли возле источника Аз, дБ	65=0 hs=1M	ф-лы таб.3 [10]	-1,5	-1,5	-1,5	-1,5	1,5	-1,5	ż.	-1,5	-1,5		
омарное снижение поверхностью земли в средней зоне, Атл ДБ отнет ф-лы таб.3 [10] -1,5 <t< td=""><td>Снижение поверхностью земли возле приёмника Аг, дБ</td><td>Gr = 1 hr = 1.5m</td><td>Ф-лы таб.3 [10]</td><td>-1,5</td><td>-1,5</td><td>H</td><td>2'9</td><td>4,7</td><td>9'0</td><td>0</td><td>0</td><td>0</td><td></td><td>17</td></t<>	Снижение поверхностью земли возле приёмника Аг, дБ	Gr = 1 hr = 1.5m	Ф-лы таб.3 [10]	-1,5	-1,5	H	2'9	4,7	9'0	0	0	0		17
ма Адг, дБ мв Адг, дВ мв Адг, дБ мв Адг, дВ	Снижение поверхностью земли в средней зоне, Ат дБ	Sm = 1	ф-лы таб.3 [10]	-1,5	41,5	0	0	0	0	0	0	0		
овни звукового давления от источника ИШ-4 ДЭС в расчётной точке днём, ф-ла(3)[10] 0 56,2 51,3 39,35,2 34,6 30,3 23,4 10,8 овни звукового давления от источника ИШ-4 ДЭС в расчётной точке ночью, ДТреб, дБ ф-ла(3)[10] 0<	Суммарное снижение поверхностью земли на траектории ра звука Аgr, дБ	спространения	ф-na (9) [10]	4,5	-4,5	5'0-	2'5	3,2	6'0-	ż.	-1,5	-1,5		1.4
овни звукового давления от источника ИШ-4 ДЭС в расчётной точке ночью, ф-ла(з)(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	овни звукового давления от источника ИШ-4 ДЭС в	тной точке днём,	Ф-ла(3)[10]	Q	26,2	51,3	39	35,2	34,6	30,3	23,4	10,8	40,6	43,7
фене (15),(46) [6] 0 -11 -6,9 -12,3 -11,1 -7,6 -8,9 -13,8 (эле (15),(46) [6] 0 0 0 0 0 0 0 0 0 0 0 0	вни звукового давления от источника ИШ-4 ДЭС в	тной точке ночью,	Ф-ла(3)[10]	0	O	0	0	0	0	0	0	0	0	ā
Фла (15),/16) [6] 0 0 0 0 0 0 0 0 0 0 0	Требуемое снижение днём, ∆Lтреб, дБ		фолы (15),(16) [6]	0	-11	6'9-	-12,3	-11,1	9,7-	<u>စဉ်</u>	-13,8	-28,2		
	Требуемое снижение ночью, ∆Lтреб, дБ		19) (91)/(51) leu-ф	0	0	0	0	0	0	o	0	0		

Ţ		7	æ	4	S	9	7	8	5	27	=	17	13
Уровни звуковой мощности источника днём, Lw, дБ		исходиь е даиные	0	107,4	106,5	100	94,5	90,2	85,9	1,18	8'92		
Уровни звуковой мощности максимального звука источни	чника днём, Імх, дБ	ачные вычироком	0	110,4	109,5	103	5'26	93,2	6'88	84,1	8'62	Б	
Уровни звуковой мощности источника ночью, Lw, дБ		ачней ачийохэй	0	0	0	0	0	0	Ó	0	0		
Уровни звуковой мощности максимального звука источни	чника ночью, Lwx, дБ	эганней эганйохи	o	0	0	0	0	0	0	0	0		
Поправка на телесный угол №, дБ	0≥628	1018(41/Ω)	3	m	£	m	Ė	3	'n	m	£0		
Показатель направленности источника Dĭ, дБ		исходные данные:	.0	0	0	a	0	0	0	0	0		
Поправка на направленность источника Dc, дБ	Dc	10 + C/a	m	πi	ΒŊ	en	m	9	m	m	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстоячие = 98,56 м	(01) (2) ev-ф				H	6'05						
Коэффициент затухания звука в атмосфере $lpha,$ ДБ/км	Та≍20,°С Ра=101.33,кПа hотн,=7036	ф.ла (5) [9]	0,02	60'0	55,0	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в этмосфере Аатт, дБ		ф-ла (8) [10]	0	0	0	0,1	6,0	5'0	6'0	2,3	2.7		111
Снижение поверхностью земли возле источника Аs, дБ	Gs = 0 hs = 1m	ф-лы таб.3 [10]	-1,5	-1,5	1,5	-1,5	4,5	-1,5	-1,5	1,5	-1,5	13	
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 hr=1.5w	ф-лытаб.3 [10]	-1,5	4,5	2'0	9	6,8	9'0	0	0	0	4	
Снижение поверхностью земли в средней зоне, Ат дБ	0m ≥ 1.	ф-лы таб.3 [10]	-0,7	-0,7	o	o	0	O	a	0	0	4	
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дб	аспространения	[01] (6) ем-ф	-3,7	7,5-	8'0-	4,5	2,8	6'0-	-1,5	-1,5	-1,5	1	1
Уровни звукового давления от источника ИШ-5 Автопогрузчик в расчётной точке днём, дБ	чик в расчётной	(01)(E)ev-ф	0	63,2	59,4	47,5	43,6	42,8	38'6	32,4	8'22	48,8	51,8
Уровни звукового давления от источника ИШ-5 Автопогруз точке ночью, дБ	грузчик в расчётной	ф-ла(3)[10]	0	0	a	a	0	0	a	o	0	0	0
Требуємое снижение днём, ∆Lтреб, дБ)9] (91)'(51) MV-Ф	0	4,8	6,0	-4,6	3,5	-0,3	-1,4	-6,5	-21,2		

		2	æ	4	S	9	7	80	6	10	11	17	13
Требуємое снижение ночью, ∆Lтреб, дБ		ф-лы (15),(16) [6]	ō	ō	0	0	0	0	0	ō	0		
Источник шума: ИШ-6 Компрессор , координаты источника (x,y,z), м =[1284730.07,442841.16,1.00]	ника (х,у,z), м =[128	34730.07,442841.7	16,1.00]										
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	o	105,4	104,5	86	92,5	88,2	6'88	79,1	74,8		1
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	на днём, Імх, дБ	исходные данные	0	108,4	107,5	101	5'56	91,2	86,9	82,1	77,8		71
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	0	0	0	0	0	a	0	0		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	на ночью, Імх, дБ	исходиъе данные	0	0	0	0	0	0	0	0	0		
Поправка на телесный угол DS), дБ	12=6.28	10Lg(45/D)	m	m	Э	m	ю	ſΩ	m	M	m		
Показатель направленности источника Di, дБ		исходные данные	0	0	0	0	0	0	a	a	0		1:
Поправка на направленность источника Dc, дБ	Dc	DΩ + Di	m	'n	m	m	en .	is.	m	m	т		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 335,29 м.	[01] (2) ev-ф					61,5						. *
Коэффициент затухания звука в атмосфере ос. дБ/кол	Та=20,°С Ра=101.33,кПа ћотн.=70%	ф.ла (5) [9]	20'0	50'0	0,33	1,12	5,79	4,98	9,04	23,09	77,63		1: 7
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	0	0	0,1	0,4	6'0	1,7	m	7,7	26		
Снижение поверхностью земли возле источника Аѕ, дБ	65 = 0 hs = 1m	Ф-литтаб.3 [10]	-1,5	-1,5	1,5	-1,5	-1,5	1,5	1,5	-1,5	-1,5		1.2
Снижение поверхностью земли возле приёмника Аг, дБ	Gr = 1. hr = 1,5,80	ф-лы таб.3 [10]	-1,5	-1,5	1,9	7	2	0,7	0	0	0		111
Снижение поверхностью земли в средней зоне, Ат дБ	Sm =1	ф-лы таб.3 [10]	-2,3	-2,3	o	0	0	0	a	0	0		
Суммарное снижение поверхностью земли на траектории р звука Аgr, дБ	ии распространения	ф. ла (9) [10]	5,3	-5,3	0,4	5,5	3,5	-0,8	-1,5	-1,5	1,5		13.1

		7	m	4	'n	9	`	0	n	3	1	77	13
Уровни звукового давления от источника ИШ-6 Компрессор в расчётной точке днём, дБ	ИШ-6 Компрессор в расчётной	[01](E)ev-ф	0	2725	45,4	33,6	29,62	28,8	23,8	14,3	0	34,9	38
Уровни звукового давления от источника ИШ-6 Компрессор в расчётной точке ночью, дБ	ИШ-6 Компрессор в расчётной	(01)(10)	0	0	0	o	0	0	0	0	0	0	0
Требуемое снижение днём, ∆Lтреб, дБ		фелы (15),(16) [6]	0	-17,8	-15,6	-20,4	-19,4	-16,2	-18,2	-25,7	0		
Требуемое онижение ночью, ∆\треб, дБ		ф-лы (15),(16) [6]	0	o	0	ø	0	0	0	0	0		
Уровни звукового давления в расчётной точке	юй точке												
Суммарные уровни звукового давления в расчётной точке от всех источников шума днём, Lpt, дБ	в расчётной точке от всех источников	ф-ла (19) [1]	o	89	63,4	51,4	47,4	46,7	42,2	34,9	23,3	52,7	59,8
Суммарные уровни звукового давления в расчётной точке от всех источников шума ночью, Lpt, дБ	в расчётной точке от всех источников	ф-ла (19) [1]	0	ò	o	0	а	0	0	0	Q	O	0
Допускаемые УЗД днём, Ідоп, дб	территория у жилого дома	Ta6n.3[2]	06	75	96	59	54	20	47	45	44	55	70
Допускаемые УЗД ночью. Гдоп, дБ	территория у жилога дома	Ta6n.3[2]	83	29	23	46	44	40	37,	35.	33	45	99
Превышение днём, дБ		Lpr - Lpon	06-	1	-2,6	9'2-	9'9-	-3,3	4,8	-10,1	-20,7	-2,3	-10,2
Превышение ночью, дБ		Lpr - Lgon	-83	-67	-57	49	44	9	37	-35	33	45	-60

Приложение Э. Расчет акустического воздействия на период эксплуатации проектируемого объекта

בייים לייים בייים בייים בייים לייים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים ב	the formation and the second s												
Наименование величин и их описание	au	Ссылка	Уров	Уровни звукового давления, дБ, в октавных полосах, со среднегеометрическими частотами, Гц	звукового давления, дБ, в октавных пол среднегеометрическими частотами, Гц	давлен метри	ния, дБ ческим	, в окт	эвных отами,	голоса Гц	0) 'x	La, ABA	LMakc,
			31,5	63	125	250	200	1000	2000	4000	8000		
, ti		2	3	4	2	9	7	88	6	10	11	12	13
ИШ-1 [координаты на глане (к.у.?), м = (1284607.6,442779.8,5.0)]													
Описание источника: Буксир "Ирбис"													
Режим работы источника:							HEF	непостоянный	PER				
Продолжительность работы в дневной период (7.00-23.00);								0.25 4ac					
Продолжительность работы в ночной период (23.00-7.00):							5	0.125 yac					
Тип источника шума:							нешние	истачи	внешние источники шума				
Категория источника шума:													
Вид агрегата/работ:													
Описание агрегата/работ:				ĺ		j	ĺ			Ì		j	
Пространственный угол излучения, рад.	Ω = 6.28	моюдине данные											
Уровень звуковой мощности источника LwA, дБА		моюдные данные										111,4	
Спектральные поправки К $(\Delta_{J_{a}})$ для разложения общего уровня звуковой мощности в спектр по октавным полосам, дБ	ня звуковой	[5]	666-	7,1	5,5	1,8	-2,4	-6,4	-10,6	-14	-17,1		
Октавные уровни звуковой мощности источника Lw, дБ		$Lw=LwA=K(\Delta_{p,n})$	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Поправка на время работы источника днём ∆Тд, дБ	т = 0.25 н время работы	101/1/10)					-18,1						
Поправка на время работы источника ночью ∆Тн, дБ	;=0,125 ч воемя работы	(s/÷)8ngt					-18,1				П	F	
Эквивалентные уровни звуковой мощности источника днём, Lw. дБ	Гм, дБ	LW + ΔTA	0	100,4	8,86	95,1	6'06	86,9	82,7	79,3	76,2	11	
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	y, Lw, 46	LW+ΔTre	0	100,4	98,8	1,29	6'06	86,9	82,7	79,3	76,2		

		7	2	•	•	0		,	2	3	1	1
ИШ-2 [координаты ча плане (х.у.г), м = (1284620.7,442788.3,5.0)]												
Описание источника: Буксир «Адмирал Лазарев»												
Режим работы источника:							неп	непостоянный	ıs			
Продолжительность работы в дневной период (7.00-23.00):							0	0.25 yac				
Продолжительность работы в ночной период (23.00-7.00):							0	0.125 yac				
Тип источника шума:						æ	нешние	внешние источники шума	и шума			
Категория источника шума:									H			
Вид агрегата/работ:												
Описание агрегата/работ;					H							
Пространственный угол излучения, рад.	D=6.28	мсходные данные										
Уровень звуковой мощности источника LwA, дБА		мсжодные данные										111,7
Спектральные поправки К $(\Delta_{l,k})$ для разложения общего уров мощности в спектр по октавным полосам, дБ	уровня звуковой	(5)	666-	7,1	5,5	1,8	-2,4	6,4	-10,6	-14	-17.1	
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{Lh})$	0	118,8	2,711	113,5	109,3	E,20L	101,1	2'15	94,6	T
Поправка на время работы источника днём ∆Тд, дБ	1= 0.25-u spews pa6oru	10Lg(t/16)					-18,1					
Поправка на время работы источника ночью ∆Тн, дБ	7 = 0.125 v spews pačotsi	10Lg(t/S)					-18,1					Π
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	л, Ім, дБ	Lw + ATA	0	100,7	1'66	95,4	91,2	87,2	88	9'62	76,5	Ħ
Эквивалентные уровни звуковой мощности источника ночы	начью, Ім, дБ	Lw + ΔTH	0	100,7	1,66	95,4	91,2	87,2	83	9'62	76,5	
ИШ-3] $ (0.00p_{\rm Q}(M) 0.01 + 0.01) M = (1.2846.33.9, 442796.7.5.0) (1.2846.33.9, 442796.7.5.0) $												
Описание источника: Буксир «Генерал Раевский»												
Режим работы источника:							неп	непостоянный	12			
Продолжительность работы в дневной период (7 00-23 00):							۱	0.25 yac				

Propagationerpassecre, patients a incertod's regulacy (23.067/30)	1		2	3	4	2	9	7	8	6	10	11	12 13
28 HICKORTHINE ADMINSE 118,8 117,2 113,5 105,3 101,1 97,7 94,6 104,1/6 104,1/6 106,7 99,1 95,4 91,2 87,2 83 79,6 76,5 104,1/6 104,1/6 106,7 99,1 95,4 91,2 87,2 83 79,6 76,5 104,1/6 104,1/6 106,7 99,1 95,4 91,2 87,2 83 79,6 76,5 104,1/6 106,1 106,	Продолжительность работы в ночной период (23.00-7.00):							o	.125 час				
23 NCOQU-NE ABININE NCOQU-NE ABININE 5,5 1,8 2,4 6,4 30,6 14 -17,1 601-14 17,2 113,5 109,3 105,3 101,4 97,7 94,6 1001-14 100	Тип источника шума;						8	нешиме	источни	ки шума	=		
13. INCOORDING ABBRINGE 15. I 25. I 1,8	Категория источника шума:												
10 11 11 12 12 13 10 12 13 10 13 13	Вид агрегата/работ:												
10 (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Описание агрегата/работ:												
53 3-999 7,1 5,5 1,8 2,4 6,4 10,6 1-14 17,1 113,5 109,3 105,3 101,1 97,7 94,6 118,4 118,1 117,2 113,5 109,3 101,1 97,7 94,6 118,4 118,1 118,4 118,1 118,1 113,5 109,3 101,1 97,7 94,6 118,4 118,1 118,4 118,1	Пространственный угол излучения, рад,	Ω=6.28	экшией актиона					1					Ē
54 118,4 117,2 113,5 109,3 101,1 97,7 100,1 118,4 117,2 113,5 109,3 105,3 101,1 97,7 100,1 100,1 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 99,1 95,4 91,2 87,2 83 79,6 100,7 90,1 90,1 90,1 90,1 90,1 90,1 90,1 90,1	Уровень звуковой мощности источника LwA, дБА		исходные данные										111,7
1018(4)16) 1018(4)16) 1018(4)16) 1018(4)16) 1118,8 117,2 113,5 113,5 113,5 113,5 113,1 1	Спектральные поправки $\mathbb{K}(\Delta_{\mathrm{LA}})$ для разложения общего уров мощности в спектр по октавным полосам, дБ	зня звуковой	(5)	666-	1'2	5,5	1,8	-2,4	-6,4	-10,6	-14	-17,1	
-0.25 ч 101g(t/16) -18,1 -18,	Октавные уровни звуковой мощности источника Lw, дБ		LW = LWA + RIGLA)	0	118,8	117,2	113,5	109,3	105,3	101,1	7,7	94,6	
10µ(178) -18,1	Поправка на время работы источника днём АТД, дБ	7 = 0.25 4 8pews paforsi	10(g(1/16)					-18,1					
Lw + ΔTq 0 100,7 99,1 95,4 91,2 87,2 83 79,6 Lw + ΔTH 0 100,7 99,1 95,4 91,2 87,2 83 79,6 Lw + ΔTH 0 100,7 99,1 95,4 91,2 87,2 83 79,6 1-6.28 мсходуние данные	Поправка на время работы источника ночью ∆Тн, дБ	т = 0.125 ч время работы						-18,1					
	Эквивалентные уровни звуковой мощности источника днём	1, Lw, 46	Lw + STA	0	7,001	1,66	95,4	2,16	87,2	83	79,6	76,5	
1,442805.1,1.0)] "Капитан Фофонов" ериод (7,00-23.00): риод (23.00-7.00): 12=6.28 исходуые данные	Эквивалентные уровни звуковой мощности источника ночы	ю, Lw, дБ		0	100,7	1,66	95,4	91,2	87,2	83	79,6	76,5	
"Капитан Фофонов" ериод (7.00-23.00): риод (23.00-7.00): 12=6.28 исходуме данные	ИШ-4 [координаты ча плане (x,y,z], m = (1284647.1,442805.1,1.0)].												
ериод (7.00-23.00): риод (23.00-7.00): 12 = 6.28: исходуме данные	Описание источника: Лоцманский катер "Капитан Фофонов'												
риод (23.00-7.00): риод (23.00-7.00): 12 = 6.28: мсходуме данные	Режим работы источника:							неп	остояни	ый			
риод (23.00-7.00)); \tau = 6.28	Продолжительность работы в дневной период (7.00-23.00):							,-,	3.25 vac				
Ω = 6.28: мсходуње данные	Продолжительность работы в ночной период (23.00-7.00):							0	.125 yac	No.			
Ω=6.28	Тип источника шума:						В	нешние	источни	ни шума	2		
12=6.28	Категория источника шума:												
Ω=6.28	Вид агрегата/работ:												
12 = 6.28	Описание агрегата/работ:		0.					Ì			Ī	Ĵ	1
	Пространственный угол излучения, рад.	□=6.28	исходные данные			•							

1		2	3	4	s	9	7	80	6	10	11	12	13
Уровень звуковой мощности источника LwA, дБА		исходные данные		1		L	ì		Ξ			7,601	
Спектральные поправки К $\{\Delta_{i,\mathbf{d}}\}$ для разложения общего уровн мощности в спектр по октавным полосам, д 5	ровня звуковой	(5)	666-	7,1	5,5	1,8	12,4	-6,4	-10,6	-14	-17,1		1
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = Lw A + R \langle \Delta_{L A} \rangle$	0	116,8	115,2	111,5	107,3	103,3	99,1	65,7	97'6		
Поправка на время работы источника днём ∆Тд, дБ	7 = 0.25 4 8 pears pagional	1016(4/16)					-18,1						
Поправка на время работы источника ночью ∆Тн, дБ	т = 0,125 ч время работы	101g(1/8)					-18,1						
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	.w, дБ	Lw + ΔTR	0	7,86	97,1	93,4	89,2	85,2	81	77,6	74,5		
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	Lw, дБ	LW-A-LATH	0	7,86	1,76	p'86	7'68	85,2	81	77,6	24,5		
ИШ-5 (координаты на тиане (x y,z), м = (1284660.2,442813.5,5.0))													
Описание источника: Лоцманский катер "Капитан Фофонов"													
Режим работы источника:							Her	непостоянный	ый				Ī
Продолжительность работы в дневной период (7.00-23.00);		1						0.25 vac					
Продолжительность работы в ночной период (23.00-7.00):) (0.125 vac					
Тип источника шума:							внешние источники шума	источни	ни шума	_			
Категория источника шума:									4				
Вид агрегата/работ:													
Описание агрегата/работ;												İ	Ĭ
Пространственный угол излучения, рад.	Ω=6.28	исходные данные											
Уровень звуковой мощности источника LwA, дБА		исходные данные			121	II.						101,8	
Спектральные поправки $K(\Delta_{\lfloor d \rfloor})$ для разложения общего уровн мощности в спектр по октавным полосам, дБ	ровня звуковой	[5]	666-	7,1	25.	1,8	-2,4	-6,4	-10,6	-14	-17,1		
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{La})$	0	108,9	107,3	103,6	99,4	95,4	51,2	87,8	84,7		
Поправка на время работы источника днём ∆Тд, дБ	т = 0,25 ч время работы	10Lg(7/16)					-18,1						

		7	3	4	2	9	7	8	6	10	11	12	13
Поправка на время работы источника ночыо ∆Тн, дБ	t = 0,125 w epews pa6otm	101g(:/8)					-18,1					. [
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	.Lw, дБ	LW+ATA	0	8'06	2,68	85,5	81,3	£,77	73,1	69,7	9'99		1.1
Эквивалентные уровни звуковой мощности источника ночью, Lw., дБ	о, tw. дБ	Lw + ATH	.0	8'06	89,2	85,5	81,3	77,3	73,1	69,7	9'99		+ -
\mathbf{MLL} -6 (координаты на гилане (х.у.д.), м = (1284673.4,442821.3,5.0))							71						
Описание источника: Многоцелевой катер "Бора"									l la				
Режим работы источника:			L		H		неп	непостоянный	17.0	l.			
Продолжительность работы в дневной период (7.00-23.00);		Y						0.25 yac					
Продолжительность работы в ночной период (23.00-7.00);							0	0.125 vac					
Тип источника шума:)				8	внешние источники шума	источни	и шума	15.			
Категория источника шума:			36										
Вид агрегата/работ:		1											
Описание агрегата/работ;								1	Ī		Ī	Ī	
Пространственный угол излучения, рад.	Ω=6.28	исходные данные				Ш	1						1
Уровень звуковой мощности источника LwA, дБА	1	искодные данные										105,6	
Спектральные поправки $\mathbb{K}(\Delta_{L_0})$ для разложения общего уров мощности в спектр по октавным полосам, дБ	ровня звуковой	(5)	666-	7,1	มา	1,8	-2,4	-6,4	-10,6	-14	-17,1		
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{LA})$	0	112,7	111,1	107,4	103,2	565	35	91,6	2,88		
Поправка на время работы источника днём ∆Тд, дБ	1 = 0.25 ч время работы	10Lg(7/16)					-18,1						
Поправка на время работы источника ночью ∆Тн, дБ	т = 0.125 ч время работы	101E(1/8)					-18,1						
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	Lw, A6	Lw + ΔTA	0.	94,6	93	89,3	85,1	81,1	76,9	73,5	70,4	H	E 1
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	э, Ім, дБ	LW + ΔTH	0	94,6	88	89,3	85,1	81,1	5'92	73,5	70,4		

		7	9	đ	^		,		7	2	1	77
ИШ-7 [координаты ча плане (х.у.z), м = (1284686.6,442830.3,5.0)]												
Описание источника: Катер "Кондор"												
Режим работы источника:							не	непостоянный	510	Ш		
Продолжительность работы в дневной период (7.00-23.00):								0.25 yac				
Продолжительность работы в ночной период (23.00-7.00):	4							0.125 yac	47			
Тип источника шума:						2	знешние	источни	внешние источники шума			
Категория источника шума:												
Вид агрегата/работ:												
Описание агрегата/работ;												
Пространственный угол излучения, рад.	Ω=6.28	исходные данные										
Уровень звуковой мощности источника LwA, дБА		исходные данные			LIU							102,9
Спектральные поправки К $(\Delta_{1,h})$ для разложения общего уровня звуковой мощности в спектр по октавным полосам, дБ	вня звуковой	(5)	666-	7,1	5,5	1,8	-2,4	-6,4	-10,6	-14	-17,1	
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{Lh})$	0	110	108,4	104,7	100,5	5'96	92,3	88,9	85,8	į.
Поправка на время работы источника днём ∆Тд, дБ	т = 0.25-ч время работы	10LB(t/16)					-18,1				T	
Поправка на время работы источника ночью ∆Тн, дБ	; = 0.125 ч время работы	10(8(1/8)					-18,1					
Эквивалентные уровни звуковой мощности источника днём	днём, Ім, дБ	Lw + ATA	0	91,9	90,3	9'98	82,4	78,4	74,2	70,8	1,79	
Эквивалентные уровни звуковой мощности источника ночы	ночью, Ім, дБ	Lw + ΔTH	0	91,9	5'06	86,6	82,4	78,4	74,2	70,8	1,79	
ИШ-8 (координаты на глане (x y, t), м = (1284699, 7,442838.7,5 д))					-							
Описание источника: Судно "Сарган"		ſ										
Режим работы источника:							нег	непостоянный	ЫŘ			
Продолжительность работы в дневной пермол (7 00-23 00)	.06							0.25 yac	L			

риод (23.00-7.00); ——————————————————————————————————	1		2	3	4	S	9	7	8	6	70	11	12 13
11 12 12 12 12 12 12 12	Продолжительность работы в ночной период (23.00-7.00):							0	125 yac				
рати источника Диба, дБА Тим сточника дбА Тим стом сточника дбА Тим стом стом стом стом стом стом стом сто	Тип источника шума;						8	нешиме	источни	ки шума	=		
ти источника рад, ти источника рад, доворя вауковой веньия полосови, дБ веньия полосови полосови, дБ веньия полосови, дБ веньия полосови, дБ веньия полосови, дБ веньия полосовиния вума веньия советь дЕ веньи	Категория источника шума:												
итучения, рад. (A.) Диля разложения общего уровия звуковой (В.) Табага (В.) Таба	Вид агрегата/работ:		77										
тор излучения, рад, продужения рад, продуже двитые поиности источния вобщего уровня звуковой источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днём. Дб по так источния днем. Дб по так источния дум. Дб по так источния дум. Дб по так источния дум. Дб по так источния днем. Дб по так источния дум. Дб по так источния дум. Дб по так источния дум. Дб по так источния длем. Дб по так источния дум. Дб по так источния дум. Дб по так источния длем.	Описание агретата/работ:												
одности источника LWA, ДБА ———————————————————————————————————	Пространственный угол излучения, рад.	Ω=6.28.	межодные данные										
18 да да да да да да да да да да да да да	Уровень звуковай мощности источника LwA, дБА		исходные дэнные										102,9
работы источника днём АТа, дБ 1 = 0.25 ч досты источника днём АТа, дБ 1 = 0.25 ч досты источника днём АТа, дБ 1 = 0.25 ч досты источника днём АТа, дБ 1 = 0.25 ч досты источника днём АТа, дБ 1 = 0.25 ч досты источника днём АТа, дБ 1 = 0.25 ч досты источника днём № дБ 1 = 0.25 ч досты источника днём № дБ 1 = 0.25 ч досты источника днем АТа, дБ 1 = 0.25 ч досты источника днем № дБ 1 = 0.25 ч досты достовни и и и и и и и и и и и и и и и и и и	я общего у	ня звуковой	(9)	666-	172	5,5	œ. ∺1	-2,4	-6,4	-10,6	-14	1,71-	
заботы источника днём АТд, дБ 10 цк/д6 10 цк/д6 -18,1 -18,1 работы источника ночью АТн, дБ 10 цк/д6 10 цк/д6 10 д, 9 90,3 86,6 82,4 78,4 79,8 нни звуковой мощности источника ночью, LW, дБ LW+ΔTR 0 91,9 90,3 86,6 82,4 78,4 70,8 нни звуковой мощности источника ночью, LW, дБ LW+ΔTR 0 91,9 90,3 86,6 82,4 78,4 70,8 нни звуковой мощности источника ночью, LW, дБ LW+ΔTR 0 91,9 90,3 86,6 82,4 78,4 70,8 нни звуковой мощности источника ночной период (7.00-23.00): Rateшиние (7.00-23.00): ннопотоянный 0.125 час. 0.125 час. заботы в дневния период (23.00-7.00): Rateшиние источники шума: 8 нешиние источники шума 0.125 час. 0.125 час. забот: Rateшиние источники шума: 0.125 час. 0.125 час. 0.125 час.	Октавные уровни звуковой мощности источника Lw, дБ		$LW = LWA + R\{\Delta_{L\delta}\}$	0	110	108,4	104,7	100,5	5'96	92,3	88,9	82,8	
заботы источника ночью ДТИ, ДБ 10.6(178) 10.6(178) -18,1 -18,2 </td <td>Поправка на время работы источника днём ∆Тд, дБ</td> <td>7 = 0.25 4 8pews pagotsi</td> <td>101g(1/16)</td> <td></td> <td></td> <td></td> <td></td> <td>-18,1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Поправка на время работы источника днём ∆Тд, дБ	7 = 0.25 4 8pews pagotsi	101g(1/16)					-18,1					
ни звуковой мощности источника днём, Lw, дБ	Поправка на время работы источника ночью ∆Тн, дБ	т = 0.125 ч время работы	(8/1)/7101.					-18,1					
іни звуковой мощности источника ночью, Lw, дБ Lw + ΔTH 0 91,9 90,3 86,6 82,4 78,4 74,2 70,8 ламе [xy,z], м = (1284712.9.4428472.5.0)] : Катер "Боспор" : Катер "Боспор" : Ника: работы в дневной период (7.00-23.00): в ночной период (23.00-7.00): в	Эквивалентные уровни звуковой мощности источника днём.	.Lw, 46	Lw + STA	0	6'16	6'06	9,98	82,4	78,4	74,2	70,8	1,73	51
лане (х.ү.г.), м = (1284712.9,442847.2,5.0)] : Катер "Боспор" : Катер "Боспор" ника: работы в дневной период (7.00-23.00); работы в ночной период (23.00-7.00); : шума: лабот:	Эквивалентные уровни звуковой мощности источника ночьк	o, Lw, дБ		0	91,9	5,06	9'98	82,4	78,4	74,2	70,8	2'29	
: Karep "Боспор" ника: работы в дневной период (7.00-23.00): работы в ночной период (23.00-7.00): в шума: в шума: работ:	ИШ-9 [координаты ча плане (х.у.г.), м = (1284712.9,442847.2,5.0)]												
работы в дневной период (7.00-23.00): работы в ночной период (23.00-7.00): в шума: работ:	Описание источника: Катер "Боспор"			Ш				. 7					
работы в дневной период (7.00-23.00): работы в ночной период (23.00-7.00): в шума: в бот: работ:	Режим работы источника:							неп	эстоянн	Z.			
работы в ночной период (23.00-7.00): : в шума: лабот: гол излучения: оад.	Продолжительность работы в дневной период (7.00-23.00):), 25 yac				
: шума: работ: тол излучения: оад.	Продолжительность работы в ночной период (23.00-7.00):							0	.125 yac				
s шума: забот: тол излучения: оад.	Тип источника шума:						8	нешние	источни	и шума			
лабот: гол излучения: оад.	Категория источника шума:												
D=6.28	Вид агрегата/работ:												
Ω=6.28	Описание агрегата/работ:		o.				Î					Ĵ	Ì
07:0	Пространственный угол излучения, рад.	₩ 528	мсходные данные										

	81	2	3	4	5	9	7	80	6	70	=	12	13
Уровень звуковой мощности источника LwA, дБА		исходные данные		ì		L	Ī		Ξ			107,1	
Спектральные поправки К $(\Delta_{i,d})$ для разложения общего уровня звуковой мощности в спектр по октавным полосам, д $Б$	ня звуковой	(5)	666	7,1	5,5	1,8	-2,4	-6,4	-10,6	-14	-17,1		11
Октавные уровни звуковой мощности источника Lw, дБ		$Lw=LwA+R\{\Delta_{LA}\}$	0	114,2	112,6	108,9	104,7	100,7	5'96	93,1	06		
Поправка на время работы источника днём ∆Тд, дБ	7 = 0.25 4 Bbeas pagoral	101£(1/16)					-18,1						
Поправка на время работы источника ночью ∆Тн, дБ	л = 0,125 ч время работы	1016(178)					-18,1	1					
Эквивалентные уровни звуковой мощности источника днём,	ièm, Lw, дБ	Lw + ΔTA	0	96,1	94,5	8'06	9'98	82,6	78,4	22	71,9	I	
Эквивалентные уровни звуковой мощности источника ночью. Lw, дБ	, Lw, дБ	HT∆.÷WJ.	0	1'96	94,5	8,06	86,6	82,6	78,4	5/	5'1'		
ИШ-10 (координаты на плане (х.у.г), м = (1284726.1,442855,6,5.0))													
∪писание источника: Катер Адис										Ш	Ш	Ш	
Режим работы источника;							неп	непостоянный	ый				
Продолжительность работы в дневной период (7.00-23.00):								0.25 vac					
Продолжительность работы в ночной период (23.00-7.00):							30	0.125 vac					Ĭ
Тип источника шума:		1-				a	внешние источники шума	источни	ки шума				
Категория источника шума:									4				
Вид агрегата/работ:													
Описание агрегата/работ;												Ì	
Пространственный угол излучения, рад.	Ω = 6.28	исходные данные											
Уровень звуковой мощности источника LwA, дБА		исходные данные										1,701	
Спектральные поправки К($\Delta_{[A]}$) для разложения общего уровн мощности в спектр по октавным полосам, дБ	ровня звуковой	(5)	666-	7,1	5,5	8,1	-2,4	-6,4	-10,6	-14	-17,1		
Октавные уровни звуковой мощности источника Lw, дБ		$L_{M}=L_{M}A+K(\Delta_{L\alpha})$	0	114,2	112,6	108,9	104,7	100,7	96,5	93,1	90		
Поправка на время работы источника днём ΔТд, дБ	т = 0.25 ч время работа:	10Lg(v/16)					-18,1						1

1		2	3	4	2	9	7	8	6	10	11	12	13
Поправка на время работы источника ночью ∆Тн, дБ	t = 0,125 w epews pa6otm	1018(:/8)					-18,1						
Эквивалентные уровни звуковой мощности источника днём,	iëm, Lw, дБ	Lw + ATA	0	1'96	94,5	8'06	86,6	82,6	78,4	75	71,9		
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	o, Lw., AB	Lw+ ATH	0	1'96	94,5	8,06	9998	82,6	78,4	75	71,9		+ 4
$M \coprod -1.1$ [коордунаты на влане (х.у.х), м = (1284739 2,442864.0,5.0)]													11
Описание источника: СЛВ "Кальмар"			١.										
Режим работы источника:			L		H		неп	непостоянный	Min	ļ.			li
Продолжительность работы в дневной период (7.00-23.00):		7						0.25 yac					
Продолжительность работы в ночной период (23.00-7.00);							0	0.125 vac					
Тип источника шума:):				В	внешние источники шума	источни	ки шума	151			ì
Категория источника шума:		1											ľ
Вид агрегата/работ:		10-4											i
Описание агрегата/работ:								1	Ī		Ī	ı	
Пространственный угол излучения, рад.	0 = 6.28	исходные данные				Ш	1		ī,		I		1
Уровень звуковой мощности источника LwA, дБА	1	исходные данные										100,9	
Спектральные поправки К $(\Delta_{i,d})$ для разложения общего уровня звуковой мощности в спектр по октавным полосам, дБ	ня звуковой	(5)	666-	7,1	ยา หา	1,8	-2,4	-6,4	-10,6	-14	17,1		
Октавные уровни звуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{Li})$	0	108	106,4	102,7	5'86	94,5	80'3	86,9	83,80		
Поправка на время работы источника днём ∆Тд, дБ	т = 0.25 ч время работы	1018(1/16)					-18,1						
Поправка на время работы источника ночью АТн, дБ	т = 0.125-ч время работы	(8/÷)8101					-18,1						
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	, Lw, дБ	Lw + ΔTA	0	89,9	88,3	84,6	80,4	76,4	72,2	68,8	65,7		Ξ:
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	о, Ім, дБ	LW+ ΔTH	0	6'68	88,3	84,6	80,4	76,4	72,2	58,8	1,29		

The color of the	1		7	3	4	S	9	7	80	6	10	п	12
Рамод (7,00-23,00): Веремод (23,00-7,00): Веремод (23,00-7,00-7,00): Веремод (23,00-7,00): Веремод (23,00-7,	ИШ-12 [координаты айтилие (к.ү.г.); м = (1284752.4,442872.4,5.0)]												
28. мсходчые дантые мсходчые дантые — 116,2 114,6 110,9 106,7 102,7 98,5 95,1 92 15,9 104,1 104,1 104,1 104,1 104,1 104,1 10 116,2 114,6 110,9 106,7 102,7 98,5 95,1 92 10,9 104,1	Описание источника: ПК "Севастополец"												
28. міскодільіє данные (116,2 114,6 110,9 106,7 102,7 39,5 35,1 32,7 30,7 101,15 104,15 1 30,2 32,8 88,6 84,6 80,4 77 73,9 104,4 ДТ 0 98,1 96,5 92,8 84,6 86,6 84,6 80,4 77 73,9 104,4 ДТ 0 98,1 96,5 92,8 86,6 84,6 80,4 77 73,9 104,4 ДТ 0 98,1 96,5 92,8 86,6 84,6 86,6 86,6 86,6 86,6 86,6 86	Режим работы источника:							неп	ннвотос	1010	Ш		Н
28. місходільіє даніліє (116,2 114,6 110,9 106,7 102,7 98,5 95,1 92, 92,8 104,4 Дт. 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	Продолжительность работы в дневной период (7.00-23.00):							3).25 yac				
28. MCXOQVINE Againtsie	1родолжительность работы в ночной период (23.00-7.00):	1						a	.125 yac				
28. Microquible gaminole (2)	ип источника шума:						B	нешние	источни	ки шума			
28.	атегория источника шума:												
28.	ид агрегата/работ:												
28.	описание агрегата/работ;												
51 -999 7,1 5,5 1,8 -2,4 -10,6 -14 -17,1 54 116,2 114,6 110,9 106,7 98,5 95,1 92 54 104g(1/16)	ространственный угол излучения, рад.	D=628	исходные данные			1							
(5 -999 7,1 5,5 1,8 -2,4 -6,4 -10,6 -14	ровень звуковой мощности источника LwA, дБА		исходные данные										109,1
1 = 0.25 ч время работы время работы воемя работы (10 kg/7/16) 116,2 114,6 110,9 106,7 10,7 100,7	спектральные поправки К $(\Delta_{\lfloor A floor})$ для разложения общего уров кощности в спектр по октавным полосам, дБ	вня звуковой	(5)	-999	7.1	5,5	1,8	-2,4	-6,4	-10,6	-14	-17,1	
зеромя работы 10Lg(т/16) -18,1 зеромя работы 10Lg(т/5) -18,1 днём, Lw, дБ Lw + ΔTд 0 98,1 96,5 92,8 88,6 84,6 80,4 77 ночью, Lw, дБ Lw + ΔTn 0 98,1 96,5 92,8 88,6 84,6 77 77 ночью, Lw, дБ Lw + ΔTn 0 98,1 96,5 92,8 88,6 84,6 77 77	октавные уровни эвуковой мощности источника Lw, дБ		$Lw = LwA + K(\Delta_{LA})$	0	_	-		106,7	102,7	5'86	95,1	92	
днём, Lw, дБ Lw + ДТд 0 98,1 96,5 92,8 88,6 84,6 80,4 77 ночью, Lw, дБ Lw + ДТл 0 98,1 96,5 92,8 88,6 84,6 80,4 77 ночью, Lw, дБ Lw + ДТл 0 98,1 96,5 92,8 88,6 80,4 77 3:00):	юправка на время работы источника днём ∆Тд, дБ	т = 0.25-ч время работы	10 Lg(1/16)				3	181-				T	
днём, Lw, дБ Lw + ΔTд 0 98,1 96,5 92,8 88,6 84,6 80,4 77 ночью, Lw, дБ Lw + ΔTn 0 98,1 96,5 92,8 88,6 84,6 80,4 77 ночью, Lw, дБ Lw + ΔTn 0 98,1 96,5 92,8 88,6 84,6 80,4 77 800):	Іоправка на время работы источника ночью ∆Тн, дБ	т = 0.125 ч время работы	10LE(1/8)				H	-18,1					
начыю, Lw, дБ Lw + дти 0 98,1 96,5 92,8 88,6 84,6 80,4 77 непостоянный 3.00):		л, Ім, дБ	Lw + ATA	0	98,1	5'96	97,8	988	84,6	80,4	77	73,9	
3.00)%	жвивалентные уровни звуковой мощности источника ночы	ю, Ем, дБ	Lw + ΔTH	0	98,1	5'96	95,8	9'88	84,6	80,4	11	73,9	
0-23.00)	$AIJ-13$] koopaganers, на плане $\langle x,y,z \rangle$, $m=(1284765.6.442880.8.5.0)$												
ы в дневной период (7.00-23.00):	Эписание источника: Буксир-кантовщик «Тайфун»		l										
3.00)3	ежим работы источника:							неп	ннвотос	Niñ			
	родолжительность работы в дневной период (7.00-23.00):	ağ.						١).25 yac				

0.125 час Внешние источники шума 118,5 1,8 2,4 -6,4 -10,6 -14 -17,1 1100,4 98,8 95,1 90,9 86,9 82,7 79,3 76,2 1000,4 98,8 95,1 90,9 86,9 82,7 79,3 76,2 100,4 98,8 95,1 90,9 86,9 82,7 79,3 76,2 О.125 час	1		2	3	4	2	9	7	8	6	10	11	12 13
Implyings: Implyings	Продолжительность работы в ночной период (23.00-7.00):							o	.125 час				
1 шумаг: тол калучения, рад, по отгажния вым, дБА вим и мостиния вым, дБА ви	Тип источника шума;							нешние	источни	ки шума	=		
тот излучения, рад. Ода бота и излождения довей довей дове	Категория источника шума:												
авбот: 10 в 5 да 128	Вид агрегата/работ:		T										
тот излучения, рада, псолодиче данизае поичости источния данизае поичости источния дана общего уровня звуковой вощности источния данам А.Та., да да да да да да да да да да да да да	Описание агретата/работ:												Ì
ревом К(С ₂) для разтожения общего уровеня звуковой (Б) (Б) (Б) (118,5 (118,	Пространственный угол излучения, рад.	Ω=628.	исходные данные					7	F				Ē
понит выждатия водицето уровня зеуковой вобратия общето уровня зеуковой мощности источника LW, дБ 135 118,5	Уровень звуковой мощности источника LwA, дБА		исходные данные						-				111,4
работы источника днём АТА, дБ т.= 0.25 + поцугуті по	я общего у	ня звуковой	(5)	666-	1'2	5'5	1,8	-2,4	-6,4	-10,6	-14	-17,1	
заботы источника днём ЛДа, дБ 10.55 ч 10.61/1/61 -18,1 заботы источника днём ДДа, дБ 10.25 ч 10.04 98,8 95,1 90,9 86,9 82,7 79,3 ння звуковой мощности источника ночью, LW, дБ LW+ АЛЧ 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 ння звуковой мощности источника ночью, LW, дБ LW+ АЛЧ 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 ння звуковой мощности источника ночью, LW, дБ LW+ АЛЧ 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 нния звуковой мощности источника ночью LW, дБ LW+ АЛЧ 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 нния звуковой мощности источника ночной период (23.00-7.00): LW+ АЛЧ RHHHH 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 нния: LHHHH LW+ АЛЧ LW+ АЛЧ RHHHHH RHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	Октавные уровни звуковой мощности источника Lw, дБ		$LW = LWA + R\{\Delta_{L\delta}\}$	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3	
работы источника ночью АТИ, ДБ 1 - 0.135 ч выботы источника ночью АТИ, ДБ 1 - 0.105 ч выботы источника ночью АТИ, ДБ 1 - 0.105 ч выботы выочной период (7.00-23.00); 1 - 0.155 ч вывыние источники шума: 1 шума: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Поправка на время работы источника днём ∆Тд, дБ	7 = 0.25 4 8 pews pa6ots	101,8(1/16)					-18,1					
нии звуковой мощности источника днём, Lw, дБ Lw+∆Тд 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 нии звуковой мощности источника ночью, Lw, дБ Lw+∆Ти 0 100,4 98,8 95,1 90,9 86,9 82,7 79,3 Пляне [xy,2], м = (1284778.7,4428892.5.0)] : Буксир-нантовщик «Бесстрашный» ниия: работы в дневной период (7.00-23.00): пработы в дневной период (23.00-7.00): : Внешние источники шума: набот: набот: набот: пработ:	Поправка на время работы источника ночью ∆Тн, дБ	т = 0.125 ч время работы						-18,1					
iни звуковой мощности источника ночью, Lw, дб	Эквивалентные уровни звуковой мощности источника днём,	Lw, AB	Lw + STA	0	100,4	8'86	95,1	6'06	86,9	82,7	79,3	76,2	
: Буксир-кантовщик «Бесстрашный» : Буксир-кантовщик «Бесстрашный» ника: работы в дневной период (7.00-23.00): работы в ночной период (23.00-7.00): : шума: ниума: гол излучения, рад.	Эквивалентные уровни звуковой мощности источника ночьк	o, Lw, дБ		0	100,4	8'86	95,1	6'06	86,9	7,28	79,3	76,2	
: Буксир-кантовщик «Бесстрашный» ника: работы в дневной период (7.00-23.00); работы в ночной период (23.00-7.00); з шума: лабот: гол излучения, рад. 1. 2 = 6.28	\mathbf{MLL} -14 [координаты на плане $\langle s,y,z \rangle$; м = (1284778:7,442889.2,5.0)]												
работы в дневной период (7.00-23.00): работы в ночной период (23.00-7.00): в шума: в шума: гол излучения, рад.	Описание источника: Буксир-кантовщик «Бесстрашный»			П				17					
работы в диевной период (7.00-23.00): работы в ночной период (23.00-7.00): в шума: вабот: гол излучения, рад 22 = 6.28 моходные данные	Режим работы источника:							неп	остояни	M16	l.		
работы в ночной период (23.00-7.00): : шума: вабот: гол излучения, рад.	Продолжительность работы в дневной период (7.00-23.00):								3.25 4ac				
: шума: лабот: гол излучения, рад.	Продолжительность работы в ночной период (23.00-7.00):							0	.125 yac	NA.			
в шума: набот: гол излучения, рад.	Тип источника шума:						3	нешние	источни	ни шума			
лабот: гол излучения, рад.	Категория источника шума:												
Ω=6.28	Вид агрегата/работ:												
12 = 6.28	Описание агрегата/работ:		0.						li			Ĵ	ł
	Пространственный угол излучения, рад.	₩ 528	исходные данные										

		2	3	4	S	9	7	8	6	10	11	7.7	13
Уровень звуковой мощности источника LwA, дБА		исходные данные				L	1					111,4	
Спектральные поправки К $(\Delta_{i,\delta})$ для разложения общего уровноещности в спектр по октавным полосам, дБ	ровня звуковой	(5)	666-	7,1	5,5	1,8	2,4	-6,4	-10,6	-14	-17,1	F	11 (
Октавные уровни звуковой мощности источника Lw, дБ		$Lw=LwA+R\{\Delta_{L0}\}$	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Поправка на время работы источника днём ∆Тд, дБ	7 = 0.25 H B Denis pagoral	1016(4)16)					-18,1						
Поправка на время работы источника ночью ∆Тн, дБ	т = 0,125 ч евемя работе	1018(178)					-18,1	ſ					
Эквивалентные уровни звуковой мощности источника днём,	iềm, Lw, AB	Lw + ΔTR	0	100,4	8,86	95,1	6'06	86,9	82,7	79,3	76,2		
Эквивалентные уровни звуковой мощности источника ночью, Lw, дБ	, Lw, дБ	LW-A. STH	0	100,4	8,86	1,26	6'06	6'98	82,7	79,3	76,2		
ИШ-15 [координаты на плане (х.у.г), м = (1284791.9,442897.6,5.0)]													
Описание источника: Буксир "Кайман"													
Режим работы источника:			L				нел	непостоянный	N.				
Продолжительность работы в дневной период (7.00-23.00):								0.25 vac					
Продолжительность работы в ночной период (23.00-7.00):		*					0	0.125 vac					
Тип источника шума:		J-				В	внешние источники шума	источни	ки шума				
Категория источника шума:													
Вид агрегата/работ:													
Описание агрегата/работ;						ĺ	Ì	ĺ	ı				i
Пространственный угол излучения, рад:	Ω=6.28	исходные данные											
Уровень звуковой мощности источника LwA, дБА		исходные данные			14001							112,7	
Спектральные поправки К($\Delta_{[A]}$) для разложения общего уровнощности в спектр по октавным полосам, дБ	ровня звуковой	[5]	666-	7,1	5,5	1,8	-2,4	-6,4	-10,6	-14	-17,1	F	
Октавные уровни звуковой мощности источника Lw, дБ		$L_W = L_W A + R \{ \Delta_{LA} \}$	0	119,8	118,2	114,5	110,3	106,3	102,1	7,86	9'56		
Поправка на время работы источника днём ∆Тд, дБ	т = 0.25 ч время работе	10Lg(t/16)					-18,1						-

1		2	3	4	S	9	7	8	6	70	10 11 12 13	12	13
Поправка на время работы источника ночью ∆Тн, дБ	t = 0,125 ч время работы	1018(:/8)					-18,1						
Эквивалентные уровни звуковой мощности источника днём, Lw, дБ	Lw, 46	Lw + ATA	0	101,7 100,1 96,4 92,2 88,2	1001	96,4	5,26	88,2	84	80,6 77,5	77,5		11.1
Эквивалентные уровни звуковой мощности источника ночью, Lw. дБ	Lw, AB	Lw + ATH	0	7,101	101,7 100,1 96,4 92,2 88,2	96,4	92,2		84	80,6 77,5	77,5		

Наименование величин и их описание	Z.	Ссылка	Уров	Уровни звукового давления, дБ, в октавных полосах, со среднегеометрическими частотами, Гц	ового днегео	вукового давления, дБ, в октавных пол среднегеометрическими частотами, Гц	ия, дБ ческим	, в окта и часто	вных г этами,	толоса Гц	K, C0	La, ABA	Lманс,
			31,5	63	125	250	200	1000	2000	4000	8000	Ĭ.	
1		2	3	4	2	9	7	60	6	10	11	12	13
Источник шума: ИШ-1 , координаты источника (x,y,z), м =[1284607.57,442779.85,5.00]	m=[1284607.57,4427	79.85,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		искодные данные	a	100,4	8,8	95,1	6'06	86,9	82,7	79,3	76,2		1
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ина днём, Імх, дБ	искодные данные	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные дэнные	0	100,4	8'86	95,1	6'06	6'98	82,7	79,3	76,2		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ика ночью, Імх, дБ	исходные данные	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Поправка на телесный угол DΩ, дБ	Ω=6.28	10Lg(4x/53)	m	м	m	m	6	m	m	m	m		=1
Показатель направленности источника DI, дБ		экскодные данные	0	0	Ö	0	0	0	o	0	0		
Поправка на направленность источника Dc, дБ	Dr	10 + C0	m	m	m	£	т	6	m	т	3		
Затухание из-за геометрической дивергенции, Adlv, дБ	расстояние=199,62 м	ф-na (7) [10]					25						-
Коэффициент затухания звука в атмосфере $lpha$, д $oldsymbol{L}$ км	Та=20,°C Ра=101.33,нПа horн.=70%	(5) [9]	20'0	50'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		11.7
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	0	o	0,1	0,2	9'0		8,1	4,6	15,5		
Снижение поверхностью земли возле источника As, дБ	65 = 0 MS = 84	ф-лы таб.3 [10]	2,1,5	4,5	-1,5	-1,5	1,5	2,1	1,5	1,5	2,1	1.3	
Снижение поверхностью земли возле приёмника Аг, ДБ	Gr=1	ф-лы таб.3 [10]	-1,5	-1,5	1.2	9	6.4	9.6	0	c	C		

T		2	3	4	S	9	- 1	60	6	10	11	17	13
Снижение поверхностью земли в средней зоне, Ат дБ	Ωm≥1	ф-лы таб.3 [10]	-0,1	-0,1	0	a	0	0	0	ō	0	I	
Суммарное снижение поверхностью земли на траектории р звука Аgr, дБ	ии распространения	ф-ла (9) [10]	-3,1	-3,1	£'0-	5,4	3,4	6'0-	4,5	1,5	-1,5		12
Уровии звукового давления от источника ИШ-1 в расчётной точке днём, дБ	й точке днём, дБ	ф-ла(3)[10]	0	49,5	45,1	35,5	33	32,8	28,4	27,22	8,2	37,4	55,5
Уровни звукового давления от источника ИШ-1 в расчётной точке мочью, дБ	й точке ночью, дБ	ф-ла(3)[10]	0	49,5	45,1	35,5	33	32,8	28,4	177	8,2	37,4	55,5
Требуемое снижение днём, ∆Lтреб, дБ		(15) (16) (6)	0	-15,1	-10,5	-13,1	-10,6	90 'φ'	95 10	-16,7	렆	11	
Требуемое снижение ночью, ΔLтреб, дБ		Флы (15),(16) [6]	0	-7,1	.1,5	-3,1	9'0-	3,2	1,4	-6,7	-20	ji ta	11:11
Источник шума: ИШ-2, координаты источника (x,y,z), м	.z), m =[1284620.74,442788.26,5.00]	88.26,5.00]											i e i
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	o	100,7	1,66	\$ '56	91,2	87,2	83	79,6	76,5		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ка днём, Імх, дБ	исходные дэнные	0	118,8	7'211	113,5	109,3	105,3	101,1	2'26	94,6		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	100,7	1,66	95,4	91,2	87,2	83	9'62	76,5	i	12
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ка ночью, Імх, дБ	исходные данные	٥	118,8	117,2	113,5	109,3	105,3	1,101	7,79	94,6		
Поправка на телесный угол ОΩ, дБ	D=628	101g(4π/Ω)	ŧ	m'	en.	m	· co	3	m	Œ	m		
Показатель направленности источника Di, дБ		исходные данные.	0	0	0	a	Ó	0	0	0	0		
Поправка на направленность источника Dc, дБ	Ďε	D2 + D:	3	m	ε	E	£0	60	m	3	3		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстряние = 215,20 м.	(7) [10]					2'25						
Коэффициент затухания звука в атмосфере сх. дБ/км	Та=20,°C Ра=101.33,мПа horн,=70%	ф-из (5) [9]	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		

						,							
	-	ф-ла (м) [10]	0	0	0,1	0,2	9'0	1,1	1,9	M.	16,7		
	65 = 0 15 = 5M	ф-лы таб.3 [10]	-1,5	3,5	:1,5	1,5	3,5	-1,5	:1,5	3,5	-1,5		111
Снижение паверхностью земли возле приемника Аг, дь	Gr=1 P=1.5M	флы габ.3 [10]	-1,5	-1,5	1,2	6,9	4,9	0,7	0	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm = 1	ф-лы таб.3 [10]	-0,3	-0,3	0	0	0	0	0	0	Ö		
Суммарное снижение поверхностью земли на траектории распространения звука Agr, дБ	нения	ф-ла (9) [10]	-3,3	-3,3	€'0-	5,4	3,4	8'0-	4,5	-1,5	-1,5		2
Уровни звукового давления от источника ИШ-2 в расчётной точке днём, дБ	нём, дБ	ф-ла(3)[10]	0	49,4	44,7	35,1	32,6	32,4	27,9	21,5	6,7	37	SS
Уровни звукового давления от источника ИШ-2 в расчётной точке ночью, дБ	эчью, дБ	ф-ла(3)[10]	0	49,4	44,7	35,1	32,6	32,4	27,9	21,5	6,7	37	55
Требуемое снижение днём, ∆Lтреб, дБ		флы (15),(16) [61	0	-15,2	-10,9	-13,5	11:	7'1-	9,8-	-15	-32,5	113	
Требуемое снижение ночью, Δlтреб, дБ		Флы (15) (16) [6]	o	7,7	.1,9	3,5	77	2,8	1,4	Ą.	-21,5	31	=1
Источник шума: ИШ-3, координаты источника (x,y,z), м =[1284633.90,442796.67,5.00]	33,90,4427	196.67,5.00]											147
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	a	100,7	1,66	95,4	91,2	87,2	83	9'62	76,5		- 1
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	Lwx, AB	искодные данные	٥	118,8	117,2	113,5	109,3	105,3	1,101	7,72	94,6	1	
Уровни звуковой мощности источника ночью, Lw, дБ		исходиые данные	0	100,7	1'66	95,4	91,2	87,2	83	9'62	76,5		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	Lwx, AB	искодные данные	0	118,8	2,711	113,5	£'60I	105,3	1,101	2'26	94,6		
Поправка на телесный угол ВΩ, дБ	Ω = 6.28	101g(4π/Ω)	m	m	ю	3	m	m	m	m	m		
Показатель направленности источника Di; дБ		исходные данные	O	0	0	a	0	0	ø	O	Ø		

Поправка на направленность источника Dc, дБ Затухание из-за геометрической дивергенции, Adiv, дБ	ě												
	30	Q+00	Ħ	m	m	m	m	m	m	m)	m	I	in -
	расстояние = 230,79 м.	(01) (4) en-ф					58,3						
та Коэффициент затухания звука в атмосфере сс. ДБ/ким Pa=10 han	Та=20,°C Ра=101,33,кПа horн:=70%	ф-ла{5} [9]	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	0	0	0,1	6,0	9'0	177	2,1	5,3	17,9		12
Снижение поверхностью земли возле источника As, дБ	Gs = 0 hs = 5m	ф-лы таб.3 [10]	-1,5	-1,5	-1,5	×1,5	-1,5	-1,5	3,5	-1,5	-1,5		72
Снижение поверхностью земли возле приёмника Аг, дБ	Gr = 7 fr = 1.5 m	ф.лы тяб.3 [10]	-1,5	-1,5	1,3	7	4,9	2'0	O	0	0		1 60
Снижение поверхностью земли в средней зоне, Атт дБ	Gm ≠ 1	ф-лы таб.3 [10]	5'0-	-0,5	0	0	0	0	o	0	0		
Суммарное снижение поверхностью земли на траектории распространения звука Авт, дБ	занения	ф-ла (9) [10]	-3,5	-3,5	-0,2	5,5	3,4	8'0-	4.5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-3 в расчётной точке днём, дБ	днём, дБ	ф-ла(3)[10]	0	48,9	44	34,5	31,9	31,7	2,72	20,6	4,9	£'9E	54,3
Уровни звукового давления от источника ИШ-3 в расчётной точке ночью, дБ	чочью, дБ	ф-ла(3)[10]	O	48,9	44	34,5	31,9	31,7	2,72	20,6	4,9	36,3	54,3
Требуемое снижение днём, ∆Lтреб, дБ		ф-лы (15),(16) [6]	0	-15,7	-11,6	-14,1	-11,7	5,7-	-9,4	-14,4	-34,4	111	1.1
Требуемое снижение ночью, ∆Lтреб, дБ	1-4	флы (15),(16) (6)	0	1,7-	-2,6	-4,1	-1,7	2,1	9'0	-4,4	-23,4		-
Источник шума: ИШ-4, координаты источника (x,y,z), м =[1284647.07,442805.08,1.00]	647.07,4428	05.08,1.00]											
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	0	1'86	97,1	93,4	89,2	85,2	18	77,6	74,5		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	, Імх, дБ	исходные данные	0	116,8	115,2	111,5	107,3	103,3	1,66	1'56	97'6		
Уровни звуковой мощности источника ночью, Lw, дБ		искодные данные	0	7'86	1,76	93,4	2'68	85,2	81	9'11	74,5		

Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	THE REAL PROPERTY.	исходиые данные	0										
	o, Lwx, AE			116,8	115,2	111,5	107,3	103,3	99,1	95,7	97'6		
Поправка на телесный угол DQ, дБ	Ω=6.28	10Lg(4x/Ω)	3	E	9	m	6	8	m	m	m		
Показатель направленности источника Dí, дБ		исхрдные данные	0	0	0	0	0	0	0	0	ō.		
Поправка на направленность источника Dc, дБ	Dc	10 + CO	6	e e	3	m	3	3	Ø	m	œ		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 246,36 м	ф-па (7) [10]			15	К	58,8	И		M	K		
Коэффициент затухания звука в атмосфере ∞, дБ/км Рв= h	Та=20,"С Ря=101.33,кПв hoтн.=70%	[6] (5) ev-ф	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		11:11
Учет затухания звука в атмосфере Аатт, дБ		ф-ла (8) [10]	0	a	0,1	6,0	7,0,	1,2	2,2	2'5	19,1		
Снижение поверхностью земли возле источника А5, дБ	6s=0 hs=1m	ф-лы таб.3 [10]	-1,5	4,5	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 hr=1.5M	ф-лы таб.3 [10]	-1,5	-1,5	1,4	2	4,9	L'0	0	0	0		17
Снижение поверхностью земли в средней зоне, Ат дБ	Gm = 1	ф-лы таб.3 [10]	-2,1	-2,1	0	0	0	0	0	0	o		
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	занения	ф-ла (9) [10]	-5,1	-5,1	-0,1	5,5	3,4	8'0-	2,1,5	1,5	-1,5	1 1	1.1
Уровни звукового давления от источника ИШ-4 в расчётной точке днём, дБ	анём, дБ	ф-ла(3)[10]	٥	48	41,3	31,9	29,3	29	24,5	17,6	0	33,7	51,8
Уровни звукового давления от источника ИШ-4 в расчётной точке ночью, д Б	начью, дБ	Ф-ла(3)[10]	0	48	41,3	31,9	29,3	29	24,5	17,6	0	33,7	51,8
Требуемое снижение днём, ∆Lтреб, дБ		флы (15),(16) [6]	0	-15,6	-13,2	-15,7	-13,2	5'6-	11	-16,2	0		
Требуемое снижение ночью, ∆Lтреб, дБ		(15) (15) (16) (16)	0	9'2-	4,2	7,2,	-3,2	5′0	Ţ	-6,2	0		

T	1.00	2	3	4	2	9	7	80	6	TO	17	77	13
Уровни звуковой мощности источника днём, Lw, дБ		исходиые даиные	0	8'06	89,2	85,5	81,3	77,3	73,1	7,69	9'99		
Уровни звуковой мощности максимального звука источни	чника днём, Імх, дБ	исходные данные	0	108,9	107,3	103,6	4'66	95,4	2'16	8'28	84,7	Б	1
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	8'06	2'68	5'58	81,3	17,3	1'84	2'69	9'99		
Уровни звуковой мощности максимального звука источни	чника ночью, Імх, дБ	искодные данные	0	108,9	107,3	103,6	99,4	95,4	2,16	87,8	84,7		
Поправка на телесный угол БΩ, дБ	Q=6.28	101.8(47./Ω)	e	m	m	m	m	m	m	m	m	Ī,	
Показатель направленности источника Dï, дБ		исходные данные:	0	0	0.	a	0	0	0	0	0		
Поправка на направленность источника Dc, дБ	De	10 + DQ	m	m	ΒŊ	eΩ	m.	9	m	m	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 261.98 м.	ф-ла (7) [10]				H	59,4						
Коэффициент затухания звука в атмосфере $lpha,$ д $oldsymbol{b}$ /км	Та=20,°C Ра=101.33,кПа hатн,=70%	ф-ла [5] [9]	0,02	60'0	55,0	1,12	2,79	4,98	9,04	23,09	77,63		TE
Учет затухания звука в этмосфере Аатт, дБ		ф-ла (8) [10]	0	0	t'0	0,3	2'0	1,3	2,4	9	20,3	i i	
Снижение поверхностью земли возле источника Аs, дБ	.6s = 0 hs = 5m	ф-лы таб.3 [10]	1,5	-1,5	1,5	-1,5	4,5	-1,5	2,5	1,5	-1,5	13	
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 hr=1.5m	ф-лытаб.3 [10]	-1,5	-1,5	1,5	7	6'9	7,0	0	0	0	1	1
Снижение поверхностью земли в средней зоне, Ат дБ	0m ±1.	ф-лы таб.3 [10]	8'0	-0,8	o	ō	0	0	O	0	0	I	
Суммарное снижение поверхностью земли на траектории развука Аgr, дб	ии распространения	[01] (6) ev-ф	-3,8	3,8	0	5,5	3,4	8,0-	-1,5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-5 в расчётной точке днём, дБ	точке днём, дБ	ф-ла(3)[10]	0	38,2	32,8	23,4	20,8	20,5	15,9	8,8	0	25,1	43,2
Уровни звукового давления от источника ИШ-5 в расчётной точке ночью, дБ	точке ночью, дБ	ф-ла(3)[10]	0	38,2	32,8	23,4	8'02	20,5	15,9	8,8	0	25,1	43,2
Требуемое снижение днём, АLтреб, дБ		D-76 (15),(16) [6]	0	-31,8	-28,2	-30,6	-28,2	-24,5	-26,1	-31,2	0		

1		2	æ	4	S	9	7	89	6	10	11	12	13
Требуємое снижение ночью. Актреб, дБ		Ф-лы (15),(16) [6]	0	-23,8	-19,2	-20,6	-18,2	5,7-	-13,1	-21,2	0		1
Источник шума: ИШ-6, координаты источника (х,у,z), л	z), m=[1284673.40,442821.91,5.00]	321,91,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		исходные дэнные	Q	94,6	E6	89,3	85,1	81,1	76,9	73,5	70,4		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	на днём, Імх, дБ	искодные данные	0	112,7	1'111	107,4	103,2	2'66	95	91'6	88,5		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	94,6	66	89,3	85,1	1,18	76,9	73,5	70,4) — i	
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ка ночью, Імх, дБ	исходные данные	Q	112,7	111,1	107,4	103,2	99,2	95	91,6	88,5		
Поправка на телесный угол ОΩ, дБ	17=6,28	10Lg(45/Ω)	m	m	m	m	ю	m	m	m	m		
Показатель направленности источника Dī, дБ		исходные данные	0	0	0	O	0	0	a	a	0	9	
Поправка на направленность источника Ос, дБ	DC	DQ + Di	m	'n	m	m	m	m	m	m	m	IE	
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 277,58 м	[01] (2) ev-ф					59,9						1.7
Коэффициент затухания звука в атмосфере сс. дБ/кил	Та=20,°С Ра=101.33,нПа horn.=70%	ф.na (5) [6]	20'0	60'0	0,33	1,12	5,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [1п]	0	0	0,1	6,0	8'0	1,4	2,5	6,4	21,5	3.3	-7
Снижение поверхностью земли возле источника Аз, дБ	05 = 0 MS = 2M	флитаб.3 [10]	-1,5	-1,5	1,5	1,5	-1,5	A.	5,1-	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr = 1. br = 1.5.m	ф-лы таб.3 [10]	-1,5	-1,5	1,6	7	2	2'0	0	0	0.		
Снижение поверхностью земли в средней зоне, Ат дБ	.6m=1	ф-лы таб.3 [10]	6'0-	6'0-	O	0	0	0	a	0	0		
Суммарное снижение поверхностью земли на траектории р звука Аgr, дБ	ии распространения	ф. ла (9) [10]	-3,9	-3,9	0,1	5,5	3,5	8'0-	-1,5	-1,5	1,5		

T		2	ε	4	S	9	7	8	o,	70	=	12	13
Уровни звукового давления от источника ИШ-6 в расчётной точке днём, дБ	й тачке днём, дБ	ф-na(3)[10]	0	41,7	36	26,7	24,1	7,82	161	11,8	0	28,3	46,4
Уровни звукового давления от источника ИШ-6 в расчётной точке ночью, дБ	й тачке начью, дБ	ф-ла(3)[10]	Q	41,7	36	26,7	24,1	13,7	161	11,8	0	28,3	46,4
Требуемое снижение днём, АLтреб, дБ	0	фелы (15],(16) [6]	0	-21,6	-18,2	-20,6	-18,2	-14,5	-16,2	-28,2	0		
Требуемое снижение начью, ∆\треб, дБ	*	ф-лы (15),(16) [6]	0	-13,6	-9,2	-10,6	-8,2	-4,5	2'9-	15,2	Ö		
Источник шума: ИШ-7 , координаты источника (x,y,z), м =[1284686.57,442830,32,5.00]	n=[1284686.57,4428	130,32,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	Q	91,9	5'06	9'98	82,4	78,4	74,2	70,8	1,79	I	
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ка днём, Імх, дБ	искодные данные	0	110	108,4	104,7	100,5	5'96	67'3	6'88	82'8		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	6'16	5'06	9'98	82,4	78,4	74,2	8'02	67,7		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ка ночью, Lwx, дБ	искодные данные	0	110	108,4	104,7	100,5	5'96	6'26	6'88	8'58		
Поправка на телесный угол DΩ, дБ	D=6.28	10Lg(47/Ω)	3	m	m	m	m	m	m	m	m		
Показатель направленности источника Di, дБ		исходные данлые	a	ō	q	0	0	0	o	0	0		
Поправка на направленность источника Dc, дБ	3g	(Q+0)	E	100	m	im'	·m	100	m	m	m	1	
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 293.18 м	ф-ла (7) [10]					60,3						
Коэффициент затухания звука в атмосфере 🗠, дБ/км	Та=20,°C Ра=101.33,кПа потн.=70%	ф-ла (5) IBI	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Аатт, дБ		ф-ла (8) [10]	0	ā	0,1	6,0	8,0	1,5	1,7	8,9	22,8		-
Снижение поверхностью земли возле источника Аs, дБ	6s ± 0 hs = 5m	ф-лы таб.3 [10]	-1,5	1,5	1,5	5.4	-1,5	-1,5	4,5	1,5	-1,5		

1		2	3	4	5	9	4	8	6	10	11	12	13
Снижение поверхностью земли возле приёмника Аг, ДБ	Gr = 1 hr = 1.5m	ф-лы таб.3 [10]	-1,5	-1,5	1,7	7	ş	2,0	0	Ö	0	T	
Снижение поверхностью земли в средней зоне, Ат дБ	Sm = 1	ф-лытаб.3 [10]	4	7	0	0	0	0	o	0	Ø		
Суммарное снижение поверхностью земли на траектории распространения звука Авт, дБ	спространения	(01) (6) ev-ф	7.	7	2,0	5,5	3,5	8'0-	-1,5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-7 в расчётной	ётной точке днём, дБ	ф-ла(3)[10]	0	38,6	32,7	23,5	20,8	20,5	15,8	8,2	0	25,1	43,1
Уровни звукового давления от источника ИШ-7 в расчётной	ётной точке ночью, дБ	ф-ла(3)[10]	0	38,6	32,7	23,5	20,8	20,5	15,8	8,2	0	25,1	43,1
Требуемое снижение днём, ∆Lтреб, дБ		ф-лы (15),(16) [6]	0	-31,4	-28,3	-30,5	-28,2	-24,5	-26,2	-31,8	0		
Требуемое снижение ночью, ∆Lтреб, дБ		ф-лы (15),(16) [6]	0	-23,4	-19,3	-20,5	-18,2	-7,5	-13,2	-21,8	0		
Уровни звуковой мощности источника днём, Lw, дБ		искодные данные	o	91,9	606	9,98	82,4	78,4	74,2	70,8	1,73		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	а днём, Смх, дБ	исходные даиные	0	110	108,4	104,7	100,5	5'96	92,3	6'88	82,8	Y	12
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	91,9	50,3	9'98	82,4	78,4	74,2	8'02	1,73		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	а ночью, Імх, дБ	исходные данные	0	110	108,4	104,7	100,5	5'96	92,3	6'88	85,8	1	
Поправка на телесный угол DΩ, дБ	Ω=628	10tg(4\pi/\O)	3	m	m	m	(1)	m	m	M	m		
Показатель направленности источника Di, дБ		исходные данные	0	0	0	0	Ø	0	0	0	0.		
Поправка на направленность источника Ос, дБ	ag	1Q + CQ	m	m	10	m	m	m	m	m	E)		
Зтичание из-за геометомиеской ливеогениии Adiv и	расстояние = 308,79 м	d-na (7) 110i					8'09						

		2	2	4	5	9	7	8	6	TO	11	77	13
Коэффициент затухания звука в атмосфере сс. дБ/км	Ta=20,°C Pa=101.33,kTa hone.=70%	ф-ла (5) [9]	0,02	60'0	££'0	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		(01) (8) ev-ф	o	0	0,1	6,3	6'0	1,5	2,8	7,1	24		
Снижение поверхностью земли возле источника Аs, дБ	6s = 0 H5 = 5M	флы таб.3 [10]	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Ат, дБ	Gr=1 hr=15m	ф-лы таб.3 [10]	5'1-	-1,5	1,8	1	\$	0,7	ō	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm ≥ 1	ф-лы таб.3 [10]	1,1	t/F	0	0.	0	0	0	0	0		
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	пространения	ф.ла (9) [10]	-4,1	-4,1	6,3	5,5	3/5	-0,8	1,5	3,5	-1,5	Tel	
Уровни звукового давления от источника ИШ-8 в расчётной	ётной точке днём, дБ	ф-ла(3)[10]	0	38,2	32,2	23	20,3	20	15,2	7,4	0	24,6	42,6
Уровни звукового давления от источника ИШ-8 в расчётной	ётной точке ночью, дБ	ф-ла(3)[10]	0	38,2	32,2	23	20,3	20	15,2	7,4	0	24,6	42,6
Требуемое снижение днём, АLтреб, дБ		(15) (16) [6] ⊕ Ф	0	-31,8	-28,8	16-	-28,7	-25-	-26,8	-32,6	0	34	- 1
Требуємое снижение ночью, ∆Lтреб, дБ		[9] (9t)/(5t) rev-ф	ō	-23,8	-19,8	-21	-18,7	φ	-13,8	-22,6	0	111	111
Источник шума: ИШ-9, координаты источника (x,y,z), м	,z), m =[1284712.90,442847.15,5.00]	847.15,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		искодные данные	0	1'96	94,5	8'06	86,6	82,6	78,4	75	6,17		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	з днём, Імх, дБ	нскодные данные	0	114,2	112,6	108,9	104,7	100,7	96,5	93,1	90		
Уровни звуковой мощности источника ночью, Lw, дБ		ыскодные данные	0	1′96	94,5	8'06	9'98	82,6	78,4	75	71,9		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	з ночью, Lwx, дБ	эічней эічноком	0	114,2	112,6	108,9	104,7	100,7	5'96	93,1	06	12	
Поправка на телесный угол DQ, ДБ	D=6.28	10Lg(4x/Ω)	3	m	m	E	m	B	m	m	m		

CATOR AND AND AND AND AND AND AND AND AND AND													1
Показатель направленности источника Di, дБ		исходные данные	0	a	0	0	0	0	o	0	0		
Поправка на направленность источника Ос, дБ	Dc	.g+p;	3	3	m	ю	3	m	m	m	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 324.40 м.	ф-ла (7) [10]					51,2						
Коэффициент затухания звука в атмосфере ос. дБ/км	Ta=20,7C Pa=101.33,4fln horu.=70%	(5) Eu-ф	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Аатт, дБ		ф-ла (8) [10]	ō	o	0,1	6,0	6,0	1,6	2,9	7,5	25,2		
Снижение поверхностью земли возле источника Аs, дБ	65=0 hs=5m	ф-лы таб,3 [10]	-1,5	-1,5	-1,5	1,5	-1,5	-1,5	7.5	3,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 h:=15M	флы габ.3 [10]	-1,5	-1,5	1,9	7	5	0,7	0	0	0		
Снижение поверхностью земли в средней зоне, Атт дБ	Gm = 1	ф-лы таб.3 [10]	-175	-1,2	O	0	0	0	a	0	0		
Суммарное снижение поверхностью земли на траектории расп звука Аgr, дБ	ии распространения	ф-na (9) [10]	-4,2	-4,2	b'0	5'5	3,5	8,0-	3,5	-1,5	-1,5	511	17
Уровни звукового давления от источника ИШ-9 в расчётной точке днём, дБ	очке днём, дБ	ф-ла(3)[10]	0	42,1	35,8	26,8	24,1	23,7	18,8	10,8	o	28,2	46,3
Уровни звукового давления от источника ИШ-9 в расчётной точке ночью, дБ	очке ночью, дБ	\$-na(3)[10]	0	42,1	35,8	26,8	24,1	23,7	18,8	10,8	0	28,2	46,3
Требуемое снижение днём, ∆Lтреб, дБ		(15),(16) [6]	0	-21,1	-18,4	-20,5	-18,2	-14,6	-16,4	-29,2	0		
Требуемое снижение ночью, Δίτρεδ, дБ		Ф-лы (15),(16) [6]	0	-13,1	6 '6'	-10,5	-8,2	4,6	-6,4	-19,2	o		
Источник шума: ИШ-10 , координаты источника (x,y,z), м =[1284726.07,442855.56,5.00]	=[1284726.07,442	855.56,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	0	96,1	94,5	8'06	86,6	82,6	78,4	75	6'12		
Уровни звуковой мощности максимального звука источнина днём, Lwx, дБ	днём, Імх, дБ	искодные данные	o	114,2	112,6	108,9	104,7	1,001	36,5	93,1	06		

		7	3	4	S	9	7	80	6	10	=	12	13
Уровни звуковой мощности источника ночью, Lw, дБ		исходиые даиные	0	96,1	94,5	8'06	86,6	82,6	78,4	75	6,17	1	
Уровни звуковой мощности максимального звука источни	чника ночью, Імх, дБ	исходные данные	0	114,2	112,6	108,9	104,7	100,7	5'96	93,1	06		
Поправка на телесный угол ОΩ, дБ	Ω = 6.28	101.8(47.(2)	6	m	m	m	100	en.	m	(cri)	m		
Показатель направленности источника Di, дБ		исходные данные	a	q	0	0	0	0	0	0	С		
Поправка на направленность источника Ос, дБ	3 G	[a+0a	B	m	m	m'	m	m	m	m	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 340.01 м	ф-ла (7) [10]					61,6						
Коэффициент затухания звука в атмосфере ск. дБ/юм	Та=29,°С Ра=101,33,кПа полн.=70%	јеј (5) ви-ф	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	0	0	0,1	6,4	6'0	1,7	3,1	7,8	26,4		
Снижение поверхностью земли возле источника Аs, дБ	65 = 0 hs = 5w	ф-лы таб.3 [10]	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	4,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr±1 ftr=15m	ф-лы таб.3 [10]	-1,5	-1,5	2	7	5	0,7	0	0	0		
Снижение паверхностью земли в средней зоне, Ат дБ	Gm = I	ф-лы таб.3 [10]	-1,3	-1,3	0	0	0	0	0	0	0	13	11
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	заспространения	ф-ла (9) [10]	-4,3	4,3	5'0	5,5	3,5	8'0-	-1,5	-1,5	-1,5	1	
Уровни звукового давления от источника ИШ-10 в расчётн	ётной точке днём, дБ	ф-ла(3)[10]	Ó	41,8	35,3	26,3	23,6	23,2	18,2	10,1	0	27,8	45,8
Уровни звукового давления от источника ИШ-10 в расчётн	ётной точке ночью, дБ	ф-ла(3)[10]	0	41,8	35,3	26,3	23,6	23,2	18,2	10,1	0	27,8	45,8
Требуемое снижение днём, ∆Lтреб, дБ		флы (15),(16) [6]	0	-21,5	-18,9	-20,9	-18,6	-15,1	-23,8	-29,9	0		
Требуємое снижение ночью, Δlтреб, дБ		\$-net (15),(16) [6]	0	-13,5	6'6-	-10,9	9,8	-5,1	CE.	6'61-	0		

Источник шума: ИШ-11 , координаты источника (х,у,2), м =[1284739.23,442863.98,5.00]	n =[1284739.23,442	(863.98,5.00)											
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	0	89,9	88,3	84,6	80,4	76,4	17,2	8'89	65,7		11
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	а днём, Імх, дБ	исходные данные	0	108	106,4	102,7	98,5	94,5	6'06	6'98	83,8		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные дэнные	0	6'68	88,3	84,6	80,4	76,4	72,2	8'89	1,29		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	а ночью, Смх, дБ	исходные данные	0	108	106,4	102,7	98,5	94,5	80'3	86,9	83,8		
Поправка на телесный угол DΩ, дБ	0=628	101g(4π/Ω)	m	rń.	m	m	m	m	m	m	m	E	
Показатель направленности источника Dí, дБ		исходные данные	0	o	0	0	0	0	0	0	0		
Поправка на направленность источника Ос, дБ	De	iQ+DQ	m	т	m	m	m	88	m	m	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	расст ояние = 355,61 м.	ф-ла (7) (10)				И	29					1	-1
Коэффициент затухания звука в атмосфере $lpha_{*}$ ДБ/км	Та=20,°C Ра=101.33,кПа horн.=70%	ф.иа (5) [9]	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63	LJ 1	11"
Учет затухания звука в атмосфере Aatm, дБ		ф-та (8) [10]	0	0	0,1	0,4	1	00 H	3,2	8,2	27,6		
Снижение поверхностью земли возле источника As, дБ	65=0 hs=5m	ф-лыт аб.3 [10]	2,1-	-1,5	-1,5	2,1.5	-1,5	-1,5	1,5	-1,5	-1,5	1	
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 fr=1,5m	ф-лы таб.3 [10]	-1,5	-1,5	2,1	7	5	7'0	0	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	. 6m = 1	ф-лы таб.3 [10]	-1,4	-1,4	٥	0	0	0	0	0	Q		
Суммарное снижение поверхностью земли на траектории распространения звука Авг, дБ	спространения	ф-ла (9) [10]	-4,4	-4,4	9'0	5,5	3,5	8'0-	-1,5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-11 в расчётной точке днём, дБ	й точке днём, дБ	ф-na(3)[10]	0	35,3	28,6	19,7	17	16,5	11,5	3,1	0	1,12	39,2
Уровни звукового давления от источника ИШ-11 в расчётной точке ночью, дБ	й точке ночью. дБ	4-na(3)[10]	0	35,3	28,6	19,7	17	16,5	11.5	3.1	0	21.1	39,2

		2	m	4	2	9	7	00	6	10	11	12	13
Требуемое снижение днём, ∆Lтреб, дБ		флы (15),(16) [6]	0	-34,7	-32,4	-34,3	-32	-28,5	-30,5	-36,9	0		
Требуемое снижение ночью, ∆Lтреб, дБ		флы (15),(16) [6]	0	.76,7	-23,4	-24,3	-22	-13,7	-20,5	-26,9	0		
Источник шума: ИШ-12 , координаты источника (x,y,z), м =[1284752,40,442872.39,5.00]	, m =[1284752.40,442	[872,39,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	0	1'86	5'96	92,8	88,6	84,6	80,4	11	73,9	V	12.1
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ина днём, Імх, дБ	исходные данные	0	116,2	114,6	110,9	106,7	102,7	5'86	95,1	95		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	1'86	5'96	92,8	9'88	84,6	80,4	77	73,9		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ика ночью, Lwx, дБ	исходные данные	0	116,2	114,6	110,9	106,7	102,7	98,5	95,1	95		
Поправка на телесный угол DΩ, дБ	Ω = 6.28	1018(41/9)	ε	3.	m	3	er	3	3	3	tn		
Показатель направленности источника Di, дБ		исходные данные	0	0	0	0	0	0	ø	0	0		
Поправка на направленность источника Dc, дБ	26	10 + D0	m	m	m	т	m	m	m	m	m	Ħ	1:
Затухание из-за геометрической дивергенции, Adlv, дБ	расстряние = 371,23 м	ф-ла (7) [10]					62,4						
Каэффициент затухания звука в атмосфере $lpha$, д $f b/$ км	Та=20,°C Ра=101.33,нПа hons,=70%	ф-ля (5) [9]	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		ф ла (8) [10]	0	0	t'0	0,4	Ŧ	1,8	3,4	9'8	28,8		
Снижение поверхностью земли возле источника As, дБ	6s = 0 hs = 5m	ф-лы таб.3 [10]	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	4,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 ftr=1.5m	Ф-лы таб.3 [10]	-1,5	4,5	2,2	7	5	7,0	a	O	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm = 1	ф-лы таб.3 [10]	-1,4	-1,4	0	Q	0	Ö	o	0	0	Ī	

а траектории распространения ф-ла (9) (10) — 4,4 1-12 в расчётной точке днём, дБ ф-ла(3)(10) [6] 0 1-12 в расчётной точке ночью, дБ ф-ла(3)(10) [6] 0 1-12 в расчётной точке днём, дБ ф-ла(15),(16) [6] 0 1-12 в расчётной точке днём, дБ псходные данные 0 38ука источника днём, Lwx, дБ исходные данные 0 38ука источника ночью, Lwx, дБ исходные данные 0 38ука источника ночью, Lwx, дБ исходные данные 0 38ука источника ночью, Lwx, дБ псходные данные 0		-4,4 43,1 -20,1 -12,1 118,5	98,8 36,4 36,4 36,4 36,4 116,9	27.5 27.5 27.61- 7.92- 7.95.1	24,8	-0,8 24,3	19,2	-1,5	-1,5		
ётной точке диём, дБ ф-ла[3][10] 0 ф-ла[3][10] 0 ф-ла[3][10] 0 ф-ла[3][10] 0 ф-ла[3][10] 0 ф-ла[15], [16] [6] 0 ф-ла[15], [16] [6] 0 ф-ла[15], [16] [6] 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0		43,1 43,1 -20,1 -12,1 118,5	36,4 36,4 -8,9 116,9	27.5 27.5 7.61- 7.9-7	24,8	24,3	19,2	10,6	c	180	
ётной точке ночью, дБ ф-ла(3)[10] 0 ф-ла(15),(16) [6] 0 ф-ла(15),(16) [6] 0 ф-ла(15),(16) [6] 0 ф-ла(15),(16) [6] 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0		43,1 -20,1 -12,1 100,4 118,5	36,4 -17,9 -8,9 116,9	27,51- 7,61- 7,9-	24,8	24,3	40.7		2	28,8	6'94
ф-лы (15), (16) [6] 0 ф-лы (15), (16) [6] 0 ф-лы (15), (16) [6] 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0 мскодные данные 0		-20,1 -12,1 100,4 118,5	-8,9 -8,9 116,9	-19,7 -9,7	7		7/61	10,6	0	28,8	6'94
ф-ла (15), (16) (6) 0 о носодные данные 0 искодные данные 0		12,1	98,8	-9.7	577-	-14	-16	V'62-	0		
7,2), М =[1284765,57,442880.80,5.00] исходные данные 0		100,4	98,8	95,1	5'2-	Ą	9.	-19,4	0		* 11
чника днём, Lwx, дБ искодные данные 0 искодные данные 0 искодные данные 0 чника ночью, Lwx, дБ искодные данные 0 с2=6.28 10tg(4π/Ω) 3		100,4	98,8	1,26							
чника днём, Lwx, дБ искодные данные 0 искодные данные 0 искодные данные 0 искодные данные 0 искодные данные 0 искодные данные 0 искодные данные 0 искодные данные 0 искодные данные 0		118,5	116,9		6'06	6′98	82,7	79,3	76,2		
мскодные данные 0 мника ночью, Lwx, дБ исходные данные 0 С2=6.28 10Lg(4π/Ω) 3		1		113,2	109	105	100,8	4,79	94,3		
чника ночью, Lwx, дБ искодные данные 0 Ω=6.28 10Lg(4π/Ω) 3		100,4	8'86	1,26	6'06	6'98	82,7	79,3	76,2		
10LE(47/D) 3		118,5	116,9	113,2	109	105	100,8	97,4	94,3	M	
O STRINGE BARYWANT	m	m	m	m	m	60	m	100	60		
	0	a	0	Q.	0	0	0	Q	0		
Поправка на направленность источника Dc, дб Dt Dt 3	3	m	m	m	er .	m	m	m	m		
Затухание из-за геометрической дивергенции, Adiv, дБ расстояние = 386,84 м ф-ла (7) [10]					62,8						
Та=20,°С Коэффициент затухания звука в атмосфере α, дБ/юм Ра=101.33,мпа ф-ла (5) [9] 0,02 0,09	20'0	60'0	0,33	1,12	5/2	4,98	9,04	23,09	77,63	Ā	-
Учет затухания звука в атмосфере Aatm, ДБ 0 0	o	0	0,1	0,4	1,1	1,9	3,5	6'8	30		

1		7	3	4	5	9	7	8	6	10	11	77	13
Снижение поверхностью земли возле источника Аs, дБ	65 ± 0 M5 = 5M	ioti e ger ian-ф	1,5	4,5	-1,5	5,1,5	-1,5	-1,5	-1,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 hr=1.5m	ф-лы таб.3 [10]	-1,5	-1,5	2,3	2	úγ	2'0	o	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm = 1.	ф-лы таб.3 [10]	-1,5	-1,5	0	0	0	0	o	0	0		
Суммарное снижение поверхностью земли на траектории р: зв'кка Ав', дБ	ии распространения	ф-ла (9) [10]	4,5	-4,5	8,0	5,5	3,5	8'0-	1,5	.1,5	-1,5		
Уровни звукового давления от источника ИШ-13 в расчётной точке днём, дБ	ой точке днём, дБ	ф-ла(3)[10]	0	45,2	38,2	29,4	26,6	26,1	17	12,21	0	30,7	48,8
Уровни звукового давления от источника ИШ-13 в расчётной точке ночью, дБ	ой точке ночью, дБ	[01](£)ev-ф	0	45,2	38,2	29,4	26,6	26,1	12	12,2	0	30,7	48,8
Требуемое снижение днём, АLтреб, дБ		\$-75 (15),(16) [6]	0	-18,1	-16,1	-17,8	-15,6	-12,1	-14,2	-27,8	0)		
Требуемое снижение ночью, ∆Lтреб, дБ		флы (15),(16) [6]	0	-10,1	7,1	-7,8	9'5-	-2,1	4,2	-14,8	0.		
Уровни звуковой мощности источника днём, Lw, дБ		исходиые данные	0	100,4	98,8	1,26	6'06	6'98	82,7	79,3	76,2		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ка днём, Смх, дБ	исходные данные	Q	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	100,4	8,86	1,26	6'06	6'98	82,7	79,3	76,2		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ка ночью, Імх, дБ	ычный ычнохэм	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Поправка на телесный угол ОΩ, дБ	Ω=6.28	1018(44/2)	m	m	m	m	m	m	m	m	m		
Показатель направленности источника Di, дБ		эмнией акнуюхэн	0	O	0	0	o	0	a	0	0		
Поправка на направленность источника Dc, дБ	DE	g+zzq	m	en	គា	m	m	m	m	m(m		
	28 CON	100 12					63.1					Ī	

		7	m	4	'n	9	,	20	'n	3	11	77	13
Коэффициент затухания звука в атмосфере α, дБ/км	Та=20,°C Ра=101.33,кПа hgrн.=70%	161 (5) eu-ф	20'0	60'0	6,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Аатт, дб		[01] (8) ev-ф	o	0	0,1	5'0	1,1	2	9'6	6,9	31,2		
Снижение поверхностью земли возле источника As, дБ	6s = 0 Hs = 5M	Ф-лы таб.3 [10]	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	1,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	$G_T = 1$ 0.7 = 1.5 M	флы таб,3 [10]	-1,5	-1,5	2,4	7	\$	0,7	0	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	5m ± 1	ф-лы таб.3 [10]	5'1-	-1,5	0	0	0	0	0	0	0		
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	спространения	ф-ла (9) (10)	-4,5	-4,5	6'0	5,5	3,5	-0,8	1,5	1,5	-1,5		
Уровни звукового давления от источника ИШ-14 в расчётной точке днём, дБ	й точке днём, дБ	ф-ла(3)[10]	0	44,9	37,7	29,1	26,3	25,7	20,5	11,5	0	30,3	48,4
Уровни звукового давления от источника ИШ-14 в расчётной точке ночью, дБ	й точке ночью, дБ	ф-ла(3)[10]	0	44,9	37,7	29,1	26,3	25,7	20,5	11,5	0	30,3	48,4
Требуємое снижение днём, А\треб, дБ		[9] (91) (51) (91.4)	0	-18,4	-16,5	-18,2	91*	-12,5	7,41-	-28,5	0	74	
Требуемое снижение ночью, ∆Ľтреб, дБ		[9] (91)'(51) ru-ф	0	-10,4	-7,5	-8,2	9-	-2,5	4.7	-18,5	0		117
Источник шума: ИШ-15 , координаты источника (x,y,z), м =[1284791.90,442897.63,5.00]	n =[1284791.90,44	2897.63,5.00]) i								je (
Уровни звуковой мощности источника днём, Lw, дБ		исходные данные	0	101,7	1001	96,4	92,2	88,2	22	9'08	2,77		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	а днём, Імх, дБ	исходные данные	0	119,8	118,2	114,5	110,3	106,3	102,1	98,7	92'6		
Уровни звуковой мощности источника ночью, Lw, дБ	4	эгчней эгчиохэн	0	101,7	1,001	96,4	2'26	88,2	778	80,6	2,77	100	
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	а ночью, Імх, дБ	эічней эічносу	0	119,8	118,2	114,5	110,3	106,3	102,1	7,86	92'6		
Поправка на телесный угол ОΩ, дБ	Ω=6.28	10Lg(4x/Ω)	3	m	m	m	8	3	m	m	m		

		2	3	4	2	9	4	80	6	10	11	12	13
Показатель направленности источника Di, дБ		исходные данные	0	0	0	0	0	0	0	ō	0		100
Поправка на направленность источника Dc, дБ	Dc	.a+₽a	£	3	ю	3.	3	8	m	m	3		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 418.07 м.	(01) (2) ev-ф					63,4						
Коэффициент затухания звука в этмосфере ос, дБ/им	Тя=20.°C Ря=101.33,нПш поти.=70%	[6] (5) Eu-ф.	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Аатт, дБ		ф-ла (8) [1П]	0	a	0,1	5'0	1,2	2,1	8,5	2'6	32,5		
Снижение поверхностью земли возле источника As, дБ	55 = 0 17 = 5m	ф-лы таб,3 [10]	-1,5	-1,5	-1,5	-1,5	-1,5	-1,5	1,5	-1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 h:=15M	ф-лы таб.3 [10]	-1,5	-1,5	2,5	7	м	7,0	0	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm=1	ф-лы таб.3 [10]	-1,6	-1,6	o	0	0	0	a	0	0		
Суммарное снижение поверхностью земли на траектории р звука Аgr, дБ	ии распространения	ф-ла (9) [10]	4,6	-4,6	1	5'5	3,5	8,0-	3,5	-1,5	-1,5	\mathbf{H}	17
Уровни звукового давления от источника ИШ-15 в расчётн	ётной точке днём, дБ	(01)(e)ev-ф	Q	45,9	38,6	30	27,2	26,6	21,3	12,1	0	31,2	49,3
Уровни звукового давления от источника ИШ-15 в расчётн	ётной точке ночью, дБ	ф-ла(3)[10]	ō	45,9	38,6	30	2,72	26,6	21,3	12,1	0	31,2	49,3
Требуемое снижение днём, ∆Lтреб, дБ		флы (15),(16) [6]	0	-17,6	-15,6	-17,5	15,4	71-	-13,9	6'22-	0		
Требуемае снижение ночью, ΔĽтреб, дБ		(15) (16) (19) (19)	0	9'6-	9'9-	-7,5	b'S-	-2	9,5	-14,9	0		
Уровни звукового давления в расчётной точке													
Суммарные уровни звукового давления в расчётной точке от всех источников шума днём, Lpt, дБ	всех источников	ф-ла (19) [1]	0	57,1	51,5	42,2	39,6	39,3	34,7	27,8	11,6	43,9	6,19

T		2	3	4	2	9	7	8	6	10	Π	12	13
Суммарные уровни звукового давления в расчётной точке от всех источников шума ночью, Lpt, дБ	расчётной точке от всех источников	ф-ла (19) (1)	0	57,1	51,5	42,2	39,6	39,3	34,7	8,72	11,6	43,9	61,9
Допускаемые УЗД днём, Ідоп, дБ	теаритория у жилого дома	Ta6n. 3[2]	90	75	99	59	5.	20	47.	.45	44	55	70
Допускаемые УЗД ночью, Lдоп, дБ	е жой о домеж А вессолядства.	Tabn, 3(2)	83	29	22	49	44	40	37.	35	33	45	9
Превышение днём, дБ		Lpt - Lpon	06-	6'21-	-17,9 -14,5	-16,8	-14,4	-10,7	-12,3	-17,2	-32,4	-11,1	8,1
Превышение ночью, дБ		црт - Сдол	-83	6'6-	5'5-	8'9-	4,4	7'0-	-2,3	7,7	-21,4	-1,1	1,9

Наименование величин и их описание	сание	Ссылка	Уров	Уровни звукового давления, дБ, в октавных полосах, со среднегеометрическими частотами, Гц	сового днегес	давлен метри	ия, дБ	, B OKT	звукового давления, дБ, в октавных пол среднегеометрическими частотами, Гц	толоса Гц	, co	, E	LMakc,
			31.5	63	125	250	200	1000	2000	4000	8000	Hou H	t de
1		2	3	4	S	9	7	80	6	10	11	12	13
Источник шума: ИШ-1 , координаты источника (x,y,z), м =[1284607.57,442779.85,5.00]	m=[1284607.57,4427	79.85,5.00]											
Уровни звуковой мощности источника днём, Lw, дБ		искодные дэнные	a	100,4	8,8	95,1	6'06	86,9	82,7	79,3	76,2	1	
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	ика днём, Імх, дБ	искодные данные	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	100,4	8'86	95,1	6'06	6'98	82,7	79,3	76,2		
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ика ночью, Імх, дБ	исходиые данные	0	118,5	116,9	113,2	109	105	100,8	97,4	94,3		
Поправка на телесный угол ОΩ, дБ	Ω=6.28	10Lg(4x/Ω)	n	m	т	m	m	m	m	m	m	=1	= 1
Показатель направленности источника Di, дБ		исходные данные	٥	0	О	0	0	0	a	0	0		
Поправка на направленность источника Dc, дб	Dr	ia+ga	m	m	m	m	ю	3	m	m	.0		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние=199,62 м	ф-ла (7) [110]					25						
Коэффициент затухания звука в атмосфере $lpha_{\circ}$ ДБ/км	Та=20,°C Ра=101.33,нПа hoтн.=70%	[6] (5) ev-ф	20'0	50'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		1.2
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	٥	a	0,1	0,2	9'0	÷	1,8	4,6	15,5		117
Снижение поверхностью земли возле источника As, дБ	0=59 WS=84	ф-лытаб.3 [10]	-1,5	4,5	-1,5	-1,5	-1,5	4,5	i.s	1,5	-1,5		
Снижение поверхностью земли возле приёмника Аг, ДБ	Gr=1	ф-лы таб.3 [10]	-1,5	-1,5	1,2	6,6	4,9	.9'0	a	0	C		

ī		2	3	4	S	9	7	60	6	70	11	17	13
Снижение поверхностью земли в средней зоне, Ат дБ	Ωm≥1	ф-лы таб.3 [10]	1,0	-0,1	0	a	0	0	0	ō	0	Ī	
Суммарное снижение поверхностью земли на траектории распространения звука Аgr, дБ	аспространения	ф-ла (9) [10]	-3,1	-3,1	-0,3	5,4	3,4	6'0-	4,5	1,5	-1,5		1.1
Уровии звукового давления от источника ИШ-1 в расчётной точке днём, дБ	й точке днём, дБ	ф-ла(3)[10]	0	49,5	45,1	35,5	33	32,8	28,4	22,2	8,2	37,4	5,55
Уровни звукового давления от источника ИШ-1 в расчётной точке ночью, дБ	й точке ночью, дБ	ф-ла(3)[10]	Q	49,5	45,1	35,5	33	32,8	28,4	2,2	8,2	37,4	55,5
Требуемое снижение днём, ∆Lтреб, дБ		(91)/(\$1) PV 💠	0	-20,7	-16,1	-18,7	-16,2	-12,4	.13,8	-19,8	-32,7		7 - 1
Требуемое снижение ночью, АLтреб, дБ		флы (15),(16) (6)	0	-12,7	7,1	Ł'8-	-6,2	-2,4	3,8	8,6:	7,12	ji in	1:1
Источник шума: ИШ-2 , координаты источника (x,y,z), м =[1284620.74,442788.26,5.00]	n =[1284620.74,4427	788.26,5.00]										100	
Уровни звуковой мощности источника днём, Lw, дБ		искодные данные	0	7,001	1,66	\$'56	91,2	87,2	83	79,6	76,5		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	на днём, Імх, дБ	искодные дэнные	0	118,8	7'211	5'ETT	109,3	105,3	101,1	7,78	94,6		
Уровни звуковой мощности источника ночью, Lw, дБ		исходные данные	0	100,7	1'66	5 2'4	51'5	87,2	83	79,6	76,5		*
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ка ночью, Імх, дБ	исходные данные	0	118,8	2,711	113,5	109,3	105,3	1,101	7,79	94,6		
Поправка на телесный угол DΩ, дБ	D=6.28	101g(4π/Ω)	3	m'	ďΩ	m	e	m	m	mi	m	1	
Показатель направленности источника Di, дБ		экиниве данные.	0	0	0	a	0	0	0	0	0		
Поправка на направленность источника Dc, дБ	Đ¢	D2 + D:	3	rń	m	m	m	m	m	3	m		
Затухание из-за геометрической дивергенции, Adiv, дБ	расстряние = 215,20 м.	(01) (2) ev-ф					2'25						
Коэффициент затухания звука в атмосфере α, дБ/км	Та=20,"С Ра=101.33,кПа потч,=70%	ф-иа (5) [9]	0,02	60'0	66,0	1,12	2,79	4,98	9,04	23,09	77,63		

		7	3	4	S	9	7	80	6	10	1	77	13
Учет затухания звука в атмосфере Аатт, дБ		ф-ла (8) (10)	Ö	0	0,1	0,2	9,0	1,1	1,9	μn	16,7		
Снижение поверхностью земли возле источника As, дБ	05-0 MS-2M	ф-лы таб.3 [10]	-1,5	3,5	2,5	2,5	3,5	-1,5	1,5	1,5	-1,5		11
Снижение поверхностью земли возле приёмника Аг, дБ	Gr=1 Pr=1.5m	ф-лы габ.3 [10]	-1,5	-1,5	1,2	6'9	4,9	7,0	0	0	0		
Снижение поверхностью земли в средней зоне, Ат дБ	Gm ≥ 1	ф-лы таб.3 [10]	6,0-	-0,3	0.	0	0	0	0	0	Ö		
Суммарное снижение поверхностью земли на траектории раз звука Аgr, дБ	ии распространения	ф-ла (9) [10]	3,3	5,5	6,0	5,4	3,4	8,0-	-1,5	-1,5	-1,5		1
Уровни звукового давления от источника ИШ-2 в расчётной точке днём, дБ	точке днём, дБ	ф-ла(3)[10]	0	49,4	44,7	35,1	32,6	32,4	27,9	21,5	6,7	37	25
Уровни звукового давления от источника ИШ-2 в расчётной точке ночью, дБ	гочке начью, дБ	ф-ла(3)[10]	0	49,4	44,7	35,1	32,6	32,4	27,9	21,5	6,7	37	55
Требуемое снижение днём, ∆Lтреб, дБ		ф.лы (15],(16) [6]	0	-20,9	-16,6	-19,1	9'91-	-12,9	-14,3	-18,7	-34,3	11	
Требуемое снижение ночью, АІтреб, дБ	+	ф лы (15),(16) [6]	0	-12,9	912	1,6,	9'9-	-2,9	E	-8,7	-23,3	31	-1
Источник шума: ИШ-15 , координаты источника (x,y,z), м =[1284791.90,442897.63,5.00]	=[1284791,90,44	2897.63,5.00]					110						147
Уровни звуковой мощности источника днём, Lw, дБ		нск одные данные	Q	101,7	1,001	96,4	92,2	88,2	28	9'08	2,77		
Уровни звуковой мощности максимального звука источника днём, Lwx, дБ	днём, Імх, дБ	исходные данные	0	119,8	118,2	114,5	110,3	106,3	102,1	7'86	9'56		
Уровни звуковой мощности источника ночью, Lw, дБ		нсходивіе данные	0	101,7	1001	96,4	92,2	88,2	84	80,6	2,77	11	
Уровни звуковой мощности максимального звука источника ночью, Lwx, дБ	ночью, Імх, дБ	аккодные данные	0	119,8	118,2	114,5	110,3	106,3	102,1	2'86	9'56		
Поправка на телесный угол DΩ, дБ	Ω = 6.28	10Lg(4π/Ω)	m	m	m	m	ю	m	m	m	m		
Показатель направленности источника Di, дБ		исходные данные	O	0	0	ū	0	o	O	0	Q		

1		2	3	4	S	9	7	8	6	01	11	12	13
Поправка на направленность источника Dc, дБ	Dr	id + 03d	m	m	mi	m	m	m	ēn	m)	m	=	
Затухание из-за геометрической дивергенции, Adiv, дБ	расстояние = 418.07 м.	ф-ла (7) [10]					63,4						
Коэффициент затухания звука в атмосфере сс. дБ/км	Та≑20,°C Ра=101,33,кПа homt=70%	ф-ла (5) [9]	0,02	60'0	0,33	1,12	2,79	4,98	9,04	23,09	77,63		
Учет затухания звука в атмосфере Aatm, дБ		ф-ла (8) [10]	0	o	0,1	5'0	42	2,1	3,8	2'6	32,5		
Снижение поверхностью земли возле источника Аs, дБ	Gs = 0 Ms = 8M	Ф-лы таб.3 [10]	-1,5	-1,5	-1,5	5,£	5,1-	-1,5	4,5	1,5	-1,5		1
Снижение поверхностью земли возле приёмника Аг, дБ	Gr = 1 fr = 1.5 M	ф-лы таб.3 [10]	-1,5	-1,5	2,5	7	2	2'0	0	0	0		-
Снижение поверхностью земли в средней зоне, Атт дБ	Gm ≠ 1	ф-лы габ.3 [10]	1,6	-1,6	0	0	0	0	0	0	0		
Суммарное снижение поверхностью земли на траектории I звука Аgr, дБ	ии распространения	ф-ла (9) [10]	9'7-	4,6	1	5,5	3,5	8'0-	-1,5	-1,5	-1,5		
Уровни звукового давления от источника ИШ-15 в расчёть	ётной точке днём, дБ	ф-ла(3)[10]	0	45,9	38,6	30	27,2	26,6	21,3	12,1	0	31,2	49,3
Уровни звукового давления от источника ИШ-15 в расчёть	ётной точке ночью, дБ	ф-ла(3)[10]	Q	45,9	38,6	30	27,2	26,6	21,3	17,1	0	31,2	49,3
Требуемое снижение днём, АLтреб, дБ		ф-лы (15),(16) [6]	0	-24,3	-22,6	-24,2	-22	-18,6	-20,9	6'12-	0	1	11
Требуемое снижение ночью, АІтреб, дБ		(9) (91)'(51) isu-ф	0	-16,3	-13,6	-14,2	ŽT-	9'8-	-10,9	9,71-	0	7	
Уровни звукового давления в расчётной точке													
Суммарные уровни звукового давления в расчётной точке от всех источников шума днём, Црт, дБ	з от всех источников	ф-ла (19) [1]	0	53,3	48,4	38,9	36,4	36,1	31,6	25,1	10,5	40,7	58,8
Суммарные уровни звукового давления в расчётной точке от всех источников шума ночью, Lpt, дБ	в от всех источников	ф-ла (19) [1]	0	53,3	48,4	38,9	36,4	36,1	31,6	1,25	10,5	40,7	58,8

1		2	М	4	S	9	7	œ	6	10	11	12	13
Допускаемые УЗД днём, Lдоп, дБ	теоритория у жилого дама	Ta6n. 3(2)	90	75	8	59	54	20	47	35	46	55	70
Допускаемые УЗД ночью, Ідоп, дБ	тедритория ў милога дома-	Ta6n. 3[2]	83	29	45	49	44	40	37.	35	33	45	9
Превышение днём, дБ		Lpr - Lpon	06-	£,115-	-17,6	1'02-	-20,1 -17,6	-13,9	-15,4	-19,9	-19,9 -33,5	-14,3	-11,2
Превышение ночью, дБ		Lpr - LAon	-83	-13,7	8,5	1'01-	9'2-	-3,9	5,4	6'6-	-22,5	4,3	1,2

Приложение Ю. Справки по расчетному типу судов и их одновременной швартовке

Федеральное государственное унитарное предприятие «Росморпорт» (ФГУП «Росморпорт») Азово-Черноморский бассейновый филиал Заместитель директора по капитальному строительству и ремонту

Ул. Советов, д. 19, Новороссийск 353900 Тел. (8617) 676-308

eng@nvr.rosmorport.ru

<u>14. Он. 2018</u> <u>№ 1589/0</u> На исх. № БГИ-1126 от 1.04.2018г. Главному инженеру проекта ООО «Морское Строительство и Технологии»

Лисовскому С.В.

Уважаемый Станислав Витальевич!

Направляю Вам справку о количестве судов и их планируемой периодичности швартовки в сутки у проектируемого причала по объекту «Строительство причалов для служебно-вспомогательного флота АЧБФ ФГУП «Росморпорт» в акватории порта Новороссийск вдоль Западного мола» (договор № 0373 от 14.11.2017г.).

План промеров и глубин необходимый для разработки раздела «Безопасность мореплавания» направлен по электронной почте: slisovskiy@morproekt.ru.

Приложение:

1. Справка – 1 экз. 1 л.

И.о. заместителя директора по капитальному строительству и ремонту

А.Г. Балоян

Исп. Дулебенец 3.В. тел.8(8617) 676 365 Согласовано:

Заместитель директора по безопасности мореплавания

С.Н. Заряев

Утверждаю:

И.о. заместителя директора по капитальному строительству и

ремонту

А.Г. Балоян

Справка

Необходимая информация для проектирования и строительства объекта: «Строительство причалов для служебно-вспомогательного флота Азово-Черноморского бассейнового филиала ФГУП «Росморпорт» в акватории морского порта Новороссийск вдоль Западного мола».

Сообщаем, что у проектируемого причала планируется швартовка судов различного типа (перечень судов указан в ранее направленном в Ваш адрес письме исх. №0172/02 от 19.01.2018г.) с периодичностью швартовок не более шестидесяти в сутки. Количество одновременно швартующихся судов — не более трех.

Капитан-наставник

teereoferent

Кипоренко М.П.

Федеральное государственное унитарное предприятие «Росморпорт» (ФГУП «Росморпорт»)
Азово-Черноморский бассейновый филиал Заместитель директора по капитальному

строительству и ремонту Ул. Советов, д. 19, Новороссийск 353900 Тел. (8617) 676-308

eng@nvr.rosmorport.ru

19.01. LOIS № 017L На исх. № БГИ-38 от 11.01.2018г. Главному инженеру ООО «Морское Строительство и Технологии»

Горгуце Р.Ю.

Уважаемый Роман Юльевич!

Направляю исходные данные для разработки проектной документации «Строительство причалов для служебно-вспомогательного флота АЧБФ ФГУП «Росморпорт» в акватории порта Новороссийск вдоль Западного мола» (договор № 0373 от 14.11.2017г.):

- 1. Сведения о технических характеристиках судов АЧБФ ФГУП «Росморпорт» -2 л.;
- 2. Исходные данные для учета мероприятий ГО И ЧС в составе проектной документации (исх. № 11394-12-3-8 от 01.12.2017г.) -2л.

И.о. заместителя директора

C ybancemen,

По капитальному строительству и ремонту

А.Г. Балоян

Исп. Дулебенец З.В. тел.8(8617) 676 365

CJYWEBHAR 3AMUCKA № 18/05 OT « 18 » O/

2018 год

Кому: ЗАМЕСТИТЕЛЮ ДИРЕКТОРА ПО КАПИТАЛЬНОМУ

СТРОИТЕЛЬСТВУ И РЕМОНТУ

КАРПАЧЁВУ Е.В.

ЗАМЕСТИТЕЛЯ ДИРЕКТОРА ПО ЭКСПЛУАТАЦИИ OT:

ПАВЛОВА И.В.

Тема: О ПРЕДОСТАВЛЕНИИ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК

СУДОВ АЧБФ ФГУП «РОСМОРПОРТ»

Дата: 18.01. 2018 г.

Копия:

Направляю Вам, на запрос проектировщика, тактико-технические характеристики судов служебно-вспомогательного флота АЧБФ ФГУП «Росморпорт».

- 1. Буксир «Ирбис», лоцмейстерское судно:
- валовая вместимость 221 т; длина/ширина 27,02/9,35 м; высота борта 3,60 м;
- осадка мах. 2,90 м.
- 2. Буксиры «Адмирал Лазарев» валовая вместимость 133 т; водоизмещение 250 т;

- длина/ ширина 22,64/7,8 м; высота борта 3,74 м;
- высота борта -- осадка 3,0 м.
- 3. Буксиры «Адмирал Серебряков»
- валовая вместимость 133 т;
- водоизмещение 250 т
- длина/ ширина 22,64/7,8 м;
- высота борта -3,74 M;
- осадка 3,0 м.
- 4. Буксир «Генерал Раевский»:
- валовая вместимость 133 т;
- водоизмещение 160 т;
- длина/ширина 19,34/7,34 м;
- высота борта 3,39 м;
 осадка 2,98 м;
- 4. Лоцманский катер «Капитан Фофонов»:
- валовая вместимость 80 т;
- длина/ширина 19,6/5,4 м;
- высота борта 2,8 м;
 осадка 1,8 м.
- 5. Р/К « Бора»:
- валовая вместимость 24 т;
- длина/ширина 14,0/4,36 м;
 высота борта 2,1 м;
- осадка 0,75 м.

СЛУЖБА ЗАМ, ДИРЕКТОРА ПО КАП, СТРОИТЕЛЬСТВУ И РЕМОНТУ ВНУТРЕННИЙ № 80

* 12 × 1/2018 F

6. Р/К «Кондор»: длина/ширина - 14,9/ 4,55 м; высота борта - 2,4 м; осадка - 1,8 м. 7. Комбинированное судно для гидрографических работ «Сарган»: длина/ширина - 8,40/3,1 м; - высота борта - 0,85 м; - осадка - 0,4 м. 8. Рабочий катер «Боспор»:
- длина/ширин - 22,81/6,71 м;
- высот борта - 2,91 м;
- осадка - 1,5 м. 9. Рабочий катер « Адис»:длина/ширина - 20,78/5,90 м. - высота борта - 2,91 м. - осадка -1,5 м. 10. Сборщик льяльных вод «Кальмар» пр. 1582у: - длина/ширина 29,17/8,01 m; - высота борта 3,6 M; 3,12 м. - осадка 11. ГІК «Севастополец-1» пр. 16490: - длина/ширина 45,6/21,4 m; -высота борта 4,0m; - осадка 2,6 M; 1208 т. - валовая вместимость 12. Портовый буксир-контовщик «Тайфун»: 35,43/9,3 м; 4,5 м; 3,27 м; - длина/ширина - высота борта - осадка мах водоизмещение полное 483,0 т. 13. Портовый буксир-контовщик «Бесстрашный»: - длина/ширина - 29,3/8,49 м; - высота борта - 4,34 м; осадка мах. - 3,71 м; - водоизмещение -257 т. 14. Буксир тип «Кайман» - 2 судна проектируются: - длина/ширина 26,45/9,54 м; 4,30 м; - высота борта 4,15 M; - осадка

Из расчёта размещения судов в один корпус к причалу находящемуся в эксплуатации L=182 м и планируемого причала L=250 м. безопасно и удобно для заводки швартовых концов и подключению к береговому питанию, одновременно могут быть ошвартовано 10 судов.

430 T;

Al

И.В. Павлов

Исп. Загребельный Л.И. Тел. 676-550

- водоизмещение

Таблица регистрации изменений								
Изм.	Номера листов (страниц)				Всего			
	Измененн ых	Заме нённ ых	Новых	Аннули рованны х	листов (страниц) в док.	Номер док.	Подп.	Дата